Genetic Diversity, Population Structure, and Formation of a Core Collection of 1197 Citrullus Accessions

文献类型: 外文期刊

第一作者: Xu, Yong

作者: Xu, Yong;Xu, Yong;Weng, Yiqun;Davis, Angela

作者机构:

关键词: Citrullus;genetic diversity;population structure;core set;molecular markers

期刊名称:HORTSCIENCE ( 影响因子:1.455; 五年影响因子:1.617 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Watermelon belongs to the genus Citrullus. There have been continuing interests in breeding of watermelon for economic benefits, but information on the scope and utilization of genetic variations in Citrullus is still limited. The present study was conducted in 2012-13, to evaluate the genetic diversity and population structure of the 1197 line watermelon collection maintained by the Beijing Vegetable Research Center (BVRC), which belongs to seven Citrullus species including Citrullus naudinianus, Citrullus colocynthis, Citrullus rehmii, Citrullus ecirrhosus, Citrullus amarus, Citrullus mucosospermus, and Cirullus lanatus subsp. vulgaris. Twenty-three highly informative microsatellite markers evenly distributed in the watermelon genome were used to assess genetic diversity in this collection. The markers detected on an average of 6.05 alleles per locus with the average value of polymorphism information content (PIC) at 0.49. A high level of gene diversity [Nei's gene diversity index (Nei) = 0.56] and a low observed heterozygosity (H-o = 0.10) were revealed within the collection. Structure analysis grouped the 1197 accessions into two main populations (Pop I and Pop II) and an admixture group. Pop I contained 450 accessions from C. lanatus subsp. vulgaris (446) and C. mucosospermus (4). Pop II comprised 465 accessions, 379 of which belonged to C. lanatus subsp. vulgaris and 86 to C. naudinianus (3), C. ecirrhosus (2), C rehmii (2), C. colocynthis (11), C. amarus (58), and C. mucosospermus (10). The remaining 282 accessions were classified as an admixture group. The two main populations were further subdivided into four subgroups. The groupings were consistent with the estimation of F statistics (F-st) and Nei's genetic distances in collections. We confirmed the distinct genetic backgrounds between American and East Asian ecotypes. Subsequently, we defined a core set consisting of 130 accessions including 47 from Pop I, 68 from Pop II, and 15 from the Admixture group. This core set was able to capture all 133 alleles detected by 23 simple sequence repeats (SSRs) in 1197 accessions. These results will facilitate efficient use of genetic variations in Citrullus in watermelon breeding and help optimization of accessions in genomewide association studies.

分类号: S6

  • 相关文献

[1]Identification and validation of a core set of microsatellite markers for genetic diversity analysis in watermelon, Citrullus lanatus Thunb. Matsum. & Nakai. Zhang, Haiying,Wang, Hui,Guo, Shaogui,Ren, Yi,Gong, Guoyi,Xu, Yong,Weng, Yiqun.

[2]Trail of decryption of molecular research on Botryosphaeriaceae in woody plants. Chethana, K. W. Thilini,Li, Xinghong,Zhang, Wei,Yan, Jiye,Chethana, K. W. Thilini,Hyde, Kevin D.,Chethana, K. W. Thilini,Hyde, Kevin D.. 2016

[3]Intron targeted amplified polymorphism (ITAP), a new sequence related amplified polymorphism-based technique for generating molecular markers in higher plant species. Zhong, Ruichun,Jiang, Jing,Han, Zhuqiang,He, Liangqiong,Li, Zhong,Tang, Xiumei,Tang, Ronghua,Xiong, Faqian,Han, Zhuqiang,Tang, Ronghua,Liu, Junxian. 2013

[4]Molecular Characterization of High Plant Species Using PCR with Primers Designed from Consensus Branch Point Signal Sequences. Xiong, Faqian,Jiang, Jing,Han, Zhuqiang,Zhong, Ruichun,He, Liangqiong,Tang, Ronghua,Zhuang, Weijian. 2011

[5]Genetic Diversity of Persimmon Landraces as Assessed by Morphological Traits and IRAP Molecular Markers in Jiangxi Province. Du, X.,Zen, M.,Wang, Y.,Xiong, Y.,Huang, J.,Le, M.,Pei, X.,Luo, Z..

[6]Genetic diversity and population structure of core watermelon (Citrullus lanatus) genotypes using DArTseq-based SNPs. Yang, Xingping,Ren, Runsheng,Xu, Jinhua,Li, Pingfang,Zhang, Man,Liu, Guang,Yao, Xiefeng,Yang, Xingping,Ren, Runsheng,Xu, Jinhua,Li, Pingfang,Zhang, Man,Liu, Guang,Yao, Xiefeng,Ren, Runsheng,Ray, Rumiana,Kilian, Andrzej.

[7]Isolation and characterization of microsatellite loci from the mulberry, Morus L.. Zhao, WG,Mia, XX,Jia, SH,Pan, YL,Huang, Y.

[8]Molecular profiling of genetic variability in domesticated groundnut (Arachis hypogaea L.) based on ISJ, URP, and DAMD markers. Jiang, Jing,Zhong, Ruichun,He, Liangqiong,Han, Zhuqiang,Li, Zhong,Tang, Xiumei,Tang, Ronghua,Xiong, Faqian,Jiang, Jing,He, Liangqiong,Han, Zhuqiang,Tang, Ronghua,Liu, Junxian.

[9]Association mapping of yield-related traits and SSR markers in wild soybean (Glycine sofa Sieb. and Zucc.). Hu, Zhenbin,Zhang, Dan,Zhang, Guozheng,Kan, Guizhen,Hong, Delin,Yu, Deyue,Hu, Zhenbin,Zhang, Dan. 2014

[10]Analysis of genetic diversity and population structure in a tomato (Solanum lycopersicum L.) germplasm collection based on single nucleotide polymorphism markers. Wang, T.,Wang, T.,Zou, Q. D.,Qi, S. Y.,Wang, X. F.,Wu, Y. Y.,Zhang, Y. M.,Zhang, Z. J.,Li, H. T.,Liu, N.. 2016

[11]Mitochondrial DNA reveals low population differentiation in elongate loach, Leptobotia elongata (Bleeker): implications for conservation. Zhou, Dinggang,Liu, Guangxun,Zhou, Jian. 2012

[12]Genetic Diversity and Structure of Lolium Species Surveyed on Nuclear Simple Sequence Repeat and Cytoplasmic Markers. Cai, Hongwei,Guan, Xuanli,Cai, Hongwei,Guan, Xuanli,Cai, Hongwei,Yuyama, Nana,Cai, Hongwei,Stewart, Alan,Ding, Chenglong,Xu, Nengxiang,Kiyoshi, Takako. 2017

[13]Genetic variation and population structure of the oriental fruit moth Grapholita molesta in Shanxi, a major pome fruits growing region in North China. Yang, Jing,Liu, Zhong-Fang,Fan, Ji-Qiao,Fan, Ren-Jun,Yang, Jing,Liu, Zhong-Fang,Fan, Ji-Qiao,Fan, Ren-Jun,Wu, Yu-Peng,Ma, Rui-Yan. 2016

[14]Genetic diversity and population structure of cultivated bromeliad accessions assessed by SRAP markers. Zhang, Fei,Ge, Yaying,Wang, Weiyong,Shen, Xiaolan,Liu, Xiaojing,Liu, Jianxin,Tian, Danqing,Yu, Xinying. 2012

[15]Genetic diversity and population structure of ginseng in China based on RAPD analysis. Zhao, Yan,Xu, Yong-hua,Zhang, Lian-xue,Wang, Shi-jie,Han, Feng-bo,Li, Ru-sheng,Chen, Xiao-lin,Wang, Shi-jie,Li, Gang. 2016

[16]Genetic diversity and population structure of Lamiophlomis rotata (Lamiaceae), an endemic species of Qinghai-Tibet Plateau. Liu, Jimei,Wang, Li,Geng, Yupeng,Wang, Qingbiao,Luo, Lijun,Zhong, Yang. 2006

[17]Analysis of Genetic Diversity and Population Structure of Maize Landraces from the South Maize Region of China. Liu Zhi-zhai,Guo Rong-hua,Wang Rong-huan,Shi Yun-su,Song Yan-chun,Wang Tian-yu,Li Yu,Liu Zhi-zhai,Cai Yi-lin,Guo Rong-hua,Cao Mo-ju,Zhao Jiu-ran,Wang Feng-ge,Wang Rong-huan. 2010

[18]Development of Cymbidium ensifolium genic-SSR markers and their utility in genetic diversity and population structure analysis in cymbidiums. Li, Xiaobai,Jin, Liang,Jin, Feng,Jackson, Aaron,Huang, Cheng,Li, Kehu,Shu, Xiaoli. 2014

[19]Development and characterization of microsatellite markers of the eastern keelback mullet (Liza affinis). Liu, L.,Song, N.,Gao, T. X.,Han, Z. Q.,Li, C. H.,Sun, D. R.. 2016

[20]Development of novel InDel markers and genetic diversity in Chenopodium quinoa through whole-genome re-sequencing. Zhang, Tifu,Lv, Yuanda,Zhou, Ling,Lu, Haiyan,Liang, Shuaiqiang,Bao, Huabin,Zhao, Han,Gu, Minfeng,Liu, Yuhe. 2017

作者其他论文 更多>>