The VP1 S154D mutation of type Asia1 foot-and-mouth disease virus enhances viral replication and pathogenicity
文献类型: 外文期刊
第一作者: Lian, Kaiqi
作者: Lian, Kaiqi;Yang, Fan;Zhu, Zixiang;Cao, Weijun;Jin, Ye;Liu, Huanan;Li, Dan;Zhang, Keshan;Guo, Jianhong;Liu, Xiangtao;Zheng, Haixue
作者机构:
关键词: FMDV;G-H loop;Receptor recognition site;Pathogenicity;Replication
期刊名称:INFECTION GENETICS AND EVOLUTION ( 影响因子:3.342; 五年影响因子:3.188 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: One of the proteins encoded by the foot-and-mouth disease virus (FMDV), the VP1 protein, a capsid protein, plays an important role in integrin receptor attachment and humoral immunity-mediated host responses. The integrin receptor recognition motif and an important antigenic epitope exist within the G-H loop, which is comprised of amino acids 134-160 of the VP1 protein. FMDV strain, Asia1/HN/CHA/06, isolated from a pig, was passaged four times in suckling mice and sequenced. Sequencing analyses showed that there was a mutation of the integrin receptor recognition motif Arg-Gly-Asp/Arg-Asp-Asp (RGD/RDD, VP1 143-145) and a VP1 154 serine/Asp (VP1 S154D) mutation in the G-H loop of the VP1 protein. The influence of the RGD/RDD mutation on Asia1 FMDV disease phenotype has been previously studied. In this study, to determine the influence of the VP1 S154D mutation on FMDV Asia1 replication and pathogenicity, two recombinant FMDVs with different residues only at the VP1 154 site were rescued by reverse genetics techniques and their infectious potential in host cells and pathogenicity in pigs were compared. Our data indicates that the VP1 S154D mutation increases the replication level of FMDV Asia1/HN/CHA/06 in BHK-21, IB-RS-2, and PK-15 cells and enhances pathogenicity in pigs. Through the transient transfection-infection assay to compare integrin receptor usage of two recombinant viruses, the result shows that the VP1 S154D mutation markedly increases the ability of type Asia1 FMDV to use the integrin receptors alpha(v)beta(6) and alpha(v)beta(8) from pig. This study identifies a key research target for illuminating the role of residues located at G-H loop in FMDV pathogenicity. (C) 2016 Elsevier B.V. All rights reserved.
分类号: R1
- 相关文献
作者其他论文 更多>>
-
Perillaldehyde controls citrus green mold by inhibiting the ribosome biogenesis of Penicillium digitatum and improving citrus disease resistance
作者:Liu, Shuqi;Jiang, Yuxin;Yang, Fan;Wang, Yuqing;Lu, Yongqing;Lai, Weiqiang;Long, Chao-an;Sun, Jiancheng;Yang, Fan;Long, Chao-an;Long, Chao-an
关键词:Perillaldehyde; Penicillium digitatum; Citrus; Green mold; ROS
-
Characterization of the complete plastid genome of Clivia mirabilis (Amaryllidaceae)
作者:Yue, Ling;Feng, Xiu-Li;Li, Dan;Wu, Hai-Hong;Zhao, Xing-Hua;Meng, Jing
关键词:Amaryllidaceae; Clivia mirabilis; phylogenetic analysis; plastid genome
-
A coiled-coil domain mutation in the NLR receptor SbYR1 coordinates plant growth and stress tolerance in sorghum
作者:Li, Dan;Ma, Dianrong;Li, Dan;Zhu, Zhenxing;Qu, Kuangzheng;Li, Jinhong;Lu, Xiaochun;Ma, Dianrong
关键词:NLR; ABA; JA; Flavonoid; Head Smut; Sorghum bicolor
-
Innovative far-infrared radiation assisted pulsed vacuum freeze-drying of banana slices: Drying behaviors, physicochemical properties and microstructural evolution
作者:Xu, Ming-Qiang;Ha, Bu-Er;Yang, Fan;Jiang, Yu-Hao;Zhang, An-An;Lv, Weiqiao;Xiao, Hong-Wei;Xu, Ming-Qiang;Vidyarthi, Sriram K.;Zhang, Feng-Lun
关键词:Far-infrared radiation assisted pulsed vacuum; freeze-drying; Banana slices; Drying behavior; Physicochemical properties; Microstructural evolution
-
Special expression of alanine-aminotransferase1 (OsAlaAT1) improves nitrogen utilization in wheat
作者:Jiao, Bo;Wang, Jiao;Dong, Fushuang;Yang, Fan;Liu, Yongwei;Sun, Lei;Chai, Jianfang;Zhou, Shuo
关键词:
-
Long-term warming and acidification interaction drives plastic acclimation in the diatom Pseudo-nitzschia multiseries
作者:Sun, Yanmin;Zhang, Yanan;Liang, Chengwei;Ye, Naihao;Li, Fang;Sun, Yanmin;Yang, Fan;Xu, Dong;Zhang, Yanan;Liang, Chengwei;Huang, Xintong;Wang, Bingkun;Wang, Yapeng;Sun, Haoming;Ye, Naihao;Duan, Ran;Fu, Fei-Xue;Wang, Zhuonan
关键词:
-
Rapid adaptation of Bacillus thuringiensis to alkaline environments via the L-lactate metabolism pathway regulated by the CRP/FNR family regulator LtmR
作者:Peng, Qi;Qin, Jiaxin;Xu, Hong;Kao, Guiwei;Yang, Fan;Sun, Zhongqin;Zhang, Xin;Song, Fuping;Qin, Jiaxin;Sun, Zhongqin;Guo, Shuyuan;Peng, Qi;Slamti, Leyla
关键词:Bacillus thuringiensis; CRP/FNR family regulator; Alkaline adaptation