Mitigation of cadmium and arsenic in rice grain by applying different silicon fertilizers in contaminated fields

文献类型: 外文期刊

第一作者: Wang, Hong-Yan

作者: Wang, Hong-Yan;Cen, Kuang;Wang, Hong-Yan;Chen, Peng;Sun, Guo-Xin;Wen, Shi-Lin;Zhang, Lu

作者机构:

关键词: Field experiment;Arsenic;Cadmium;Mitigation;Silicon fertilizer;Rice grain

期刊名称:ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH ( 影响因子:4.223; 五年影响因子:4.306 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: A field experiment was established to support the hypothesis that application of different silicon (Si) fertilizers can simultaneously reduce cadmium (Cd) and arsenic (As) concentration in rice grain. The "semi-finished product of Si-potash fertilizer" treatment at the high application of 9000 kg/ha (NP+S-KSi9000) significantly reduced the As concentration in rice grain by up to 20.1 %, compared with the control. Si fertilization reduces the Cd concentration in rice considerably more than the As concentration. All Si fertilizers apart from sodium metasilicate (Na2SiO3) exhibited a high ability to reduce Cd concentration in rice grain. The Si-calcium (CaSi) fertilizer is the most effective in the mitigation of Cd concentration in rice grain. The CaSi fertilizer applied at 9000 kg/ha (NPK+CaSi9000) and 900 kg/ha (NPK+CaSi900) reduced the Cd concentration in rice grain about 71.5 and 48.0 %, respectively, while the Si-potash fertilizer at 900 kg/ha (NP+KSi900), the semi-finished product of Si-potash fertilizer at both 900 kg/ha (NP+S-KSi900) and 9000 kg/ha (NP+S-KSi9000), and the rice straw (NPK+RS) treatments reduced the Cd concentration in rice grain about 42, 26.5, 40.7, and 23.1 %, respectively. The results of this investigation demonstrated the potential effects of Si fertilizers in reducing Cd and As concentrations in rice grain.

分类号: X5`X

  • 相关文献

[1]Overexpression of AtHsp90.3 in Arabidopsis thaliana impairs plant tolerance to heavy metal stress. Song, H. M.,Wang, H. Z.,Xu, X. B.,Song, H. M.. 2012

[2]Distribution of anthropogenic cadmium and arsenic in arable land soils of Hainan, China. Wang, Dengfeng,Dang, Zhiguo,Feng, Huande,Wang, Rongxiang.

[3]Fractions distribution of arsenic and cadmium in arable land soils in vicinity of mining area. Wang, Dengfeng,Feng, Huande,Huang, Haijie,Wang, Tingzhong,Zeng, Di. 2016

[4]Effect of water management on cadmium and arsenic accumulation by rice (Oryza sativa L.) with different metal accumulation capacities. Hu, Pengjie,Li, Zhu,Yuan, Cheng,Huang, Jiexue,Huang, Yujuan,Luo, Yongming,Wu, Longhua,Ouyang, Younan,Luo, Yongming,Christie, Peter. 2013

[5]As and Cd Sorption on Selected Si-Rich Substances. Peng, Hua,Ji, Xionghui,Wei, Wei,Bocharnikova, Elena,Matichenkov, Vladimir. 2017

[6]Periphyton growth reduces cadmium but enhances arsenic accumulation in rice (Oryza sativa) seedlings from contaminated soil. Shi, Gao Ling,Ma, Hong Xiang,Lu, Hai Ying,Liu, Jun Zhuo,Wu, Yong Hong,Lou, Lai Qing,Tang, Xian Jin.

[7]The availabilities of arsenic and cadmium in rice paddy fields from a mining area: The role of soil extractable and plant silicon. Yu, Huan-Yun,Ding, Xiaodong,Li, Fangbai,Wang, Xiangqin,Zhang, Shirong,Liu, Chuanping,Xu, Xianghua,Wang, Qi,Ding, Xiaodong,Yi, Jicai.

[8]Prospect for Treating Antimony-Laden Mine Wastewater Using Local Materials. Ji, Xionghui,Liu, Saihua,Juan, Huang,Jiang, John,He, Ailan,Bocharnikova, Elena,Matichenkov, Vladimir.

[9]Analysis of ustiloxins in rice using polymer cation exchange cleanup followed by liquid chromatography-tandem mass spectrometry. Cao, Zhao-Yun,Mou, Ren-Xiang,Lin, Xiao-yan,Zhou, Rong,Ma, You-Ning,Chen, Ming-Xue,Sun, Li-Hua.

[10]Analysis of variations in the amylose content of grains located at different positions in the rice panicle and the effect of milling. Zhang, XM,Shi, CH,Wu, JG,Hisamitus, H,Katsura, T,Feng, SY,Bao, GL,Ye, SH.

[11]Equations to predict methane emissions from cows fed at maintenance energy level in pasture-based systems. Stergiadis, Sokratis,Zou, Caixia,Chen, Xianjiang,Wills, David,Yan, Tianhai,Stergiadis, Sokratis,Zou, Caixia,Chen, Xianjiang,Allen, Michelle.

[12]How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals?. Smith, Pete,Haberl, Helmut,Erb, Karl-heinz,Lauk, Christian,Popp, Alexander,Harper, Richard,Tubiello, Francesco N.,de Siqueira Pinto, Alexandre,Bustamante, Mercedes,Jafari, Mostafa,Sohi, Saran,Masera, Omar,Boettcher, Hannes,Berndes, Goeran,Ahammad, Helal,Clark, Harry,Dong, Hongmin,Elsiddig, Elnour A.,Mbow, Cheikh,Ravindranath, Nijavalli H.,Rice, Charles W.,Abad, Carmenza Robledo,Abad, Carmenza Robledo,Romanovskaya, Anna,Sperling, Frank,Herrero, Mario,Herrero, Mario,House, Joanna I.,Rose, Steven.

[13]Chinese Food Security and Climate Change: Agriculture Futures. Ye, Liming,Tang, Huajun,Wu, Wenbin,Yang, Peng,Nelson, Gerald C.,Mason-D'Croz, Daniel,Palazzo, Amanda. 2014

[14]Mitigation of CH4 and N2O emissions from a forage rice field fertilized with aerated liquid fraction of cattle slurry by optimizing water management and topdressing. Riya, Shohei,Muroi, Yurie,Kamimura, Miu,Terada, Akihiko,Hosomi, Masaaki,Zhou, Sheng,Kobara, Yuso.

[15]Consequences of gene flow between oilseed rape (Brassica napus) and its relatives. Liu, Yongbo,Li, Junsheng,Liu, Yongbo,Wei, Wei,Ma, Keping,Liu, Yongbo,Darmency, Henri,Liang, Yuyong. 2013

[16]Nitrogen gaseous emissions from farm effluent application to pastures and mitigation measures to reduce the emissions: a review. Li, J.,Luo, J.,Houlbrooke, D.,Lindsey, S.,Li, J.,Luo, J.,Shi, Y.,Wang, L.,Luo, J.,Li, Y..

[17]Field-based evidence for consistent responses of bacterial communities to copper contamination in two contrasting agricultural soils. Li, Jing,Wang, Jun-Tao,Liu, Yu-Rong,He, Ji-Zheng,Li, Jing,Wang, Jun-Tao,Ma, Yi-Bing,Hu, Hang-Wei,He, Ji-Zheng. 2015

[18]Influences of plant density on the seed yield and oil content of winter oilseed rape (Brassica napus L.). Zhang, Shujie,Liao, Xing,Zhang, Chunlei,Xu, Huajun. 2012

[19]Earthworms Increased Rape Seed Yield and Colza Oil. Zhang, Shu-jie,Liao, Xing,Hu, Xiao-jia,Yu, Chang-bing,Xie, Li-hua,Li, Yin-shui,Che, Zhi,Liao, Xiang-sheng. 2013

[20]Efficacy of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) against the chive gnat, Bradysia odoriphaga. Ma, Juan,Chen, Shulong,Ma, Juan,Moens, Maurice,De Clercq, Patrick,Moens, Maurice,Han, Richou. 2013

作者其他论文 更多>>