Interactive effects of temperature and moisture on CO2 and CH4 production in a paddy soil under long-term different fertilization regimes

文献类型: 外文期刊

第一作者: Huang, Shan

作者: Huang, Shan;Sun, Yanni;Yu, Xichu;Zhang, Weijian

作者机构:

关键词: Temperature;Moisture;Carbon dioxide;Methane;Paddy;Long-term fertilization

期刊名称:BIOLOGY AND FERTILITY OF SOILS ( 影响因子:6.432; 五年影响因子:6.332 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Temperature and moisture effects on organic carbon (C) decomposition (i.e., CO2 and CH4 emissions) determine the feedback of soil organic carbon (SOC) stocks in rice (Oryza sativa L.) paddies to climate change. In the present study, soils from a long-term (initiated in 1981) fertilization experiment [unfertilized control, combined inorganic nitrogen, phosphorus, and potassium fertilization (NPK), inorganic NPK plus organic manure (NPKM)] were incubated at 20 and 30 A degrees C under both aerobic and anaerobic conditions. Relative to aerobic conditions, anaerobic conditions significantly reduced CO2 and total C release, but led to CH4 production. On average, the temperature sensitivity (Q (10)) of CH4 production was 7.4 times greater than that of CO2 production. Under anaerobic conditions, the contribution rates of CH4 production to total C release significantly increased from an average of 2.4 % at 20 A degrees C to 14.5 % at 30 A degrees C, and to the global warming potential (GWP) from 18.1 to 59.9 %, respectively. Anaerobic conditions significantly reduced the Q (10) of CO2 and total C release, but increased that of GWP. Manure-amended soils showed higher CO2 and CH4 production on a per gram soil C basis and lower Q (10) of CO2 and total C production, but higher Q (10) of CH4 production than those of the control and NPK soils. Therefore, our results suggest that there are significant interactive effects of temperature, moisture, and fertilization regimes on SOC decomposition in the paddy soil.

分类号: S15

  • 相关文献

[1]The effect of increased atmospheric carbon dioxide concentration on emissions of nitrous oxide, carbon dioxide and methane from a wheat field in a semi-arid environment in northern China. Lam, Shu Kee,Norton, Rob,Chen, Deli,Lin, Erda,Norton, Rob.

[2]Greenhouse gas emissions from swine barns of various production stages in suburban Beijing, China. Dong, H.,Zhu, Z.,Shang, B.,Kang, G.,Zhu, H.,Xin, H..

[3]Seasonal changes of CO2, CH4 and N2O fluxes in different types of alpine grassland in the Qinghai-Tibetan Plateau of China. Li, Yuanyuan,Dong, Shikui,Liu, Shiliang,Wang, Xuexia,Su, Xukun,Zhang, Yong,Tang, Lin,Zhao, Haidi,Wu, Xiaoyu,Zhou, Huakun,Cao, Guangmin,Gao, Qingzhu.

[4]EMISSIONS OF GREENHOUSE GASES FROM A TYPICAL CHINESE SWINE FARROWING BARN. Dong, H.,Zhu, Z.,Shang, B.,Kang, G.,Zhu, H.,Xin, H..

[5]Sugarcane bagasse biochars impact respiration and greenhouse gas emissions from a latosol. Deng, Wangang,Deng, Wangang,Wang, Hailong,Van Zwieten, Lukas,Lin, Zhaomu,Liu, Xingyuan,Wang, Hailong,Sarmah, Ajit K.,Wang, Hailong.

[6]Temporal variation of greenhouse gas emission in gestation swine building. Dong, H.,Zhu, Z.,Li, Y.,Tao, X.,Xin, H.. 2005

[7]The impact of grassland conversion on CO2 emission and CH4 uptake. Li, Y,Lin, ED. 2000

[8]Greenhouse gas intensity and net annual global warming potential of cotton cropping systems in an extremely arid region. Lv, Jinling,Liu, Xuejun,Li, Kaihui,Tian, Changyan,Lv, Jinling,Lv, Jinling,Liu, Xuejun,Christie, Peter,Liu, Hua,Wang, Xihe,Christie, Peter.

[9]A Management System Based on Graphical Variable for Stored Grain Protection. Sun, Ling,Zhu, Zesheng. 2015

[10]CH4, NH3, N2O and NO emissions from stored biogas digester effluent of pig manure at different temperatures. Wang, Yue,Dong, Hongmin,Zhu, Zhiping,Li, Lulu,Zhou, Tanlong,Jiang, Bo,Wang, Yue,Dong, Hongmin,Zhu, Zhiping,Xin, Hongwei.

[11]INVERSION OF PADDY LEAF AREA INDEX USING BEER-LAMBERT LAW AND HJ-1/2 CCD IMAGE. Gu, Xiaohe,Zhang, Jingcheng,Yang, Guijun,Song, Xiaoyu,Zhao, Jinling,Cui, Bei. 2013

[12]Exploring the Effect Rules of Paddy Drying on a Deep Fixed-Bed. Wang, Danyang,Zhang, Benhua,Tong, Ling,Wang, Danyang,Li, Chenghua. 2016

[13]A 90-day safety study of genetically modified rice expressing rhIGF-1 protein in C57BL/6J rats. Tang, Maoxue,Cheng, Wenke,Qian, Lili,Yang, Shulin,Cui, Wentao,Li, Kui,Tang, Maoxue,Cheng, Wenke,Qian, Lili,Yang, Shulin,Cui, Wentao,Li, Kui,Xie, Tingting,Yang, Daichang.

[14]Scenario-Based Economic Risk Assessment of Paddy Damage Caused by Floods in the Huai River Sub-Basin of China. Zhao, Sijian,Zhang, Qiao,Zhao, Sijian,Zhang, Qiao,Huang, Chongfu,Huang, Chongfu.

[15]Textural properties of stinky mandarin fish (Siniperca chuatsi) during fermentation: effects of the state of moisture. Yang, Song,Yan, Yan,Xie, Ningning,Song, Yaqiong,Yan, Xiaoming,He, Yongling,Ding, Zhien. 2017

[16]Near-infrared spectroscopy combined with equidistant combination partial least squares applied to multi-index analysis of corn. Lyu, Ning,Chen, Jiemei,Pan, Tao,Yao, Lijun,Han, Yun,Yu, Jing,Han, Yun,Yu, Jing. 2016

[17]Study on Compost Conditions and Nitrogen Changes of Poultry Dung with Banana Tree. Zhang, Yubai,Tang, Xuexi,Li, Qinfen. 2013

[18]Influence of Lighting Schedule and Nutrient Density in Broiler Chickens: Effect on Growth Performance, Carcass Traits and Meat Quality. Li, Wen-bin,Guo, Yan-ti,Wang, Rong,He, Yao,Su, Dong-ge,Chen, Ji-lan.

[19]Estimating the impacts of climate change on crop yields and N2O emissions for conventional and no-tillage in Southwestern Ontario, Canada. He, Wentian,He, Ping,Zhou, Wei,He, Wentian,Yang, J. Y.,Drury, C. F.,Smith, W. N.,Grant, B. B.,Qian, B.,Hoogenboom, G.. 2018

[20]Near Infrared Spectrum Detection Method for Moisture Content of Populus Euphratica Leaf. Bai Tie-Cheng,Wang Ya-ming,Zhang Nan-nan,Yao Na,Yu Cai-li,Bai Tie-Cheng,Wang Xing-peng,Wang Xing-peng. 2017

作者其他论文 更多>>