Analyses of the Molecular Mechanisms Associated with Silk Production in Silkworm by iTRAQ-Based Proteomics and RNA-Sequencing-Based Transcriptomics

文献类型: 外文期刊

第一作者: Wang, Shaohua

作者: Wang, Shaohua;You, Zhengying;Che, Jiaqian;Zhang, Yuyu;Qian, Qiujie;Zhong, Boxiong;Feng, Mao;Komatsu, Setsuko

作者机构:

关键词: silkworm;complex trait;proteomics;iTRAQ;transcriptomics;silk

期刊名称:JOURNAL OF PROTEOME RESEARCH ( 影响因子:4.466; 五年影响因子:4.352 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Silkworm is used as a model organism to analyze two standard complex traits, which are high and low silk yields. To understand the molecular mechanisms of silk production, the posterior silk glands aged to the third day of the fifth instar were analyzed from the ZB strain with low silk production and from the control strain Lan10. Using isobaric tags for relative and absolute quantification (iTRAQ) quantitative shotgun proteomics and RNA-sequencing-based transcriptomics, 139 proteins and 630 transcripts were identified as novel in the ZB strain compared with the Lan10 strain, indicating that these results significantly expand the coverage of proteins and transcripts of the posterior silk glands in the silkworm. Of the 89 differently changed proteins, 23 were increased, and 66 were decreased. Of the 788 transcripts, 779 were upregulated, and 9 were downregulated. These results confirm that decreased energy utilization/protein translation and enhanced protein degradation are the key factors in lower silk production. Moreover, this study provides novel insight into the molecular changes that may result in lower silk production, namely, a combination of impaired transcription activity, missed protein folding/transport, and lowered yields of the main components of fibroin, along with weakened growth/development of the posterior silk gland.

分类号: Q7`Q51

  • 相关文献

[1]Combined transcriptomic and proteomic analysis constructs a new model for light-induced anthocyanin biosynthesis in eggplant (Solanum melongena L.). Li, Jing,Ren, Li,Gao, Zhen,Jiang, Mingmin,Liu, Yang,Zhou, Lu,He, Yongjun,Chen, Huoying,Ren, Li.

[2]Soybean Omics and Biotechnology in China. Guo, Yong,Wang, Xiao-Bo,He, Wei,Zhou, Guo-An,Guo, Bing-Fu,Zhang, Le,Liu, Zhang-Xiong,Luo, Zhong-Qin,Wang, Li-Hui,Qiu, Li-Juan. 2011

[3]Proteomic studies of isoforms of the P25 component of Bombyx mori fibroin. Zhang, PB,Yamamoto, K,Aso, Y,Banno, Y,Sakano, D,Wang, YQ,Fujii, H. 2005

[4]Proteomic studies of lipopolysaccharide-induced polypeptides in the silkworm, Bombyx mori. Wang, YQ,Zhang, PB,Fujii, H,Banno, Y,Yamamoto, K,Aso, Y. 2004

[5]COMPARATIVE PROTEOMIC ANALYSIS OF Bombyx mori HEMOCYTES TREATED WITH DESTRUXIN A. Fan, Jiqiao,Han, Pengfei,Chen, Xiurun,Hu, Qionbo,Ye, Mingqiang.

[6]iTRAQ-proteomics and bioinformatics analyses of mammary tissue from cows with clinical mastitis due to natural infection with Staphylococci aureus. Huang, Jinming,Luo, Guojing,Zhang, Zijing,Wang, Xiuge,Ju, Zhihua,Qi, Chao,Zhang, Yan,Wang, Changfa,Li, Rongling,Li, Jianbin,Yin, Weijun,Zhong, Jifeng,Luo, Guojing,Zhang, Zijing,Xu, Yinxue,Moisa, Sonia J.,Loor, Juan J.,Loor, Juan J.,Moisa, Sonia J.,Loor, Juan J.. 2014

[7]iTRAQ Protein Profile Differential Analysis between Somatic Globular and Cotyledonary Embryos Reveals Stress, Hormone, and Respiration Involved in Increasing Plant let Regeneration of Gossypium hirsutum L.. Xiaoyang Ge,Chaojun Zhang,Qianhua Wang,Zuoren Yang,Ye Wang,Xueyan Zhang,Zhixia Wu,Yuxia Hou,Jiahe Wu,Fuguang Li.

[8]Unraveling the Root Proteome Changes and Its Relationship to Molecular Mechanism Underlying Salt Stress Response in Radish (Raphanus sativus L.). Sun, Xiaochuan,Wang, Yan,Xu, Liang,Li, Chao,Zhang, Wei,Luo, Xiaobo,Jiang, Haiyan,Liu, Liwang,Sun, Xiaochuan,Sun, Xiaochuan,Wang, Yan,Xu, Liang,Luo, Xiaobo,Liu, Liwang. 2017

[9]Identification of cold-stress responsive proteins in Anabasis aphylla seedlings via the iTRAQ proteomics technique. Wang, Tingting,Wang, Mei,Chu, Guangming,Ye, Chunxiu,Ye, Chunxiu. 2017

[10]iTRAQ-based proteomic profiling of granulosa cells from lamb and ewe after superstimulation. Lin, Jiapeng,Lin, Jiapeng,Wu, Yangsheng,Han, Bing,Chen, Ying,Wang, Liqin,Li, Xiaolin,Liu, Mingjun,Huang, Juncheng. 2017

[11]iTRAQ-based quantitative proteomic analysis of wheat roots in response to salt stress. Jiang, Qiyan,Niu, Fengjuan,Sun, Xianjun,Hu, Zheng,Zhang, Hui,Li, Xiaojuan.

[12]iTRAQ Protein Profiling of Adventitious Root Formation in Mulberry Hardwood Cuttings. Tang, Zhuang,Du, Wei,Du, XiaoLong,Ban, YueYuan,Cheng, JiaLing,Du, Wei,Cheng, JiaLing.

[13]Proteomic Analysis Reveals Resistance Mechanism Against Chlorpyrifos in Frankliniella occidentalis (Thysanoptera: Thripidae). Yan, Dan-Kan,Hu, Min,Tang, Yun-Xia,Fan, Jia-Qin,Yan, Dan-Kan,Hu, Min,Tang, Yun-Xia,Fan, Jia-Qin,Yan, Dan-Kan.

[14]Proteomic analysis of differentially expressed proteins in the three developmental stages of Trichinella spiralis. Liu, J. Y.,Zhang, N. Z.,Li, W. H.,Li, L.,Yan, H. B.,Qu, Z. G.,Li, T. T.,Cui, J. M.,Yang, Y.,Jia, W. Z.,Fu, B. Q.,Jia, W. Z.,Fu, B. Q..

[15]iTRAQ-based proteomic study of the effects of Spiroplasma eriocheiris on Chinese mitten crab Eriocheir sinensis hemocytes. Meng, Qingguo,Hou, Libo,Zhao, Yang,Huang, Xin,Gu, Wei,Wang, Wen,Meng, Qingguo,Hou, Libo,Zhao, Yang,Huang, Xin,Gu, Wei,Wang, Wen,Huang, Yanqing,Xia, Siyao.

[16]Global iTRAQ-based proteomic profiling of Toxoplasma gondii oocysts during sporulation. Zhou, Chun-Xue,Suo, Xun,Zhou, Chun-Xue,Suo, Xun,Zhou, Chun-Xue,Zhu, Xing-Quan,He, Shuai,Zhou, Dong-Hui,Elsheikha, Hany M.,He, Shuai,Li, Qian.

[17]Comparative proteomic analysis of virulent and avirulent strains of Toxoplasma gondii reveals strain-specific patterns. Zhou, Dong-Hui,Wang, Ze-Xiang,Zhou, Chun-Xue,He, Shuai,Zhu, Xing-Quan,Elsheikha, Hany M.,Zhou, Chun-Xue,He, Shuai. 2017

[18]Identification of early salt stress responsive proteins in seedling roots of upland cotton (Gossypium hirsutum L.) employing iTRAQ-based proteomic technique. Li, Wu,Li, Wu,Zhao, Fu'an,Fang, Weiping,Xie, Deyi,Hou, Jianan,Yang, Xiaojie,Zhao, Yuanming,Tang, Zhongjie,Nie, Lihong,Lv, Shuping. 2015

[19]Proteomic Differences between Developmental Stages of Toxoplasma gondii Revealed by iTRAQ-Based Quantitative Proteomics. Wang, Ze-Xiang,Zhou, Chun-Xue,He, Shuai,Zhou, Dong-Hui,Zhu, Xing-Quan,Zhou, Chun-Xue,Zhou, Chun-Xue,Elsheikha, Hany M.,He, Shuai,Zhu, Xing-Quan. 2017

[20]Comparative Proteomic Analysis Provides insight into the Key Proteins as Possible Targets Involved in Aspirin Inhibiting Biofilm Formation of Staphylococcus xylosus. Xu, Chang-Geng,Yang, Yan-Bei,Zhou, Yong-Hui,Hao, Mei-Qi,Ren, Yong-Zhi,Wang, Xiao-Ting,Chen, Jian-Qing,Muhammad, Ishfaq,Wang, Shuai,Li, Yan-Hua,Liu, Di,Li, Xiu-Bo,Li, Yan-Hua. 2017

作者其他论文 更多>>