Effects of heat and high irradiance stress on energy dissipation of photosystem II in low irradiance-adapted peanut leaves

文献类型: 外文期刊

第一作者: Guo, F.

作者: Guo, F.;Yang, S.;Zhang, J. L.;Meng, J. J.;Li, X. G.;Feng, Y.;Wan, S. B.

作者机构:

关键词: Arachis hypogaca;D1 protein;energy dissipation;heat and HI stress;relay-intercropped peanut;xanthophyll cycle

期刊名称:RUSSIAN JOURNAL OF PLANT PHYSIOLOGY ( 影响因子:1.481; 五年影响因子:1.608 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: To increase crop yields and not to compete for land with food crops, intercropping agricultural cultivation approach was introduced into cultivation of peanut (Arachis hypogaca L.). This approach improves the total yield of the crop per unit area, but decreases the yield of a single crop compared with mono-cropped agricultural cultivation approach. In wheat-peanut relay intercropping system, peanut plants would suffer heat and high light (HI) stress after wheat harvest. In the present work, peanut seedlings were cultivated in low light to simulate wheat-peanut relay intercropping environments. Upon exposure to heat and HI stress, energy dissipation in PSII complexes was evaluated by comparing those cultivated in low irradiance conditions with the mono-cropped peanut. The maximal photochemical efficiency of PSII (F (v)/F (m)) and the net photosynthetic rate (P (n)) decreased markedly in relay-cropped peanut (RP) after heat and HI stress, accompanied by higher degree of PSII reaction center closure (1-qP). After heat and HI stress, higher antioxidant enzyme activity and less ROS accumulation were observed in mono-cropped peanut (MP) seedlings. Meanwhile, higher content of D1 protein and higher ratio of (A + Z)/(V + A + Z) were also detected in MP plants under such stress. These results implied that heat and HI stress could induce photoinhibition of PSII reaction centers in peanut seedlings and both xanthophyll cycle-dependent thermal energy dissipation and the antioxidant system were down-regulated in RP compared to classical monocropping systems after heat and high irradiance stress.

分类号: Q94

  • 相关文献

[1]Xanthophyll Cycle and Inactivation of Photosystem II Reaction Centers Alleviating Reducing Pressure to Photosystem I in Morning Glory Leaves under Short-term High Irradiance. Li, Xin-Guo,Li, Jian-Yong,Zhao, Jin-Ping,Xu, Ping-Li,He, Qi-Wei.

[2]Photoinhibition and photooxidation in leaves of indica and japonica rice under different temperatures and light intensities. Ji, BH,Jiao, DM. 2001

[3]Photochemical efficiency of PSII and membrane lipid peroxidation in leaves of indica and japonica rice (Oryza sativa) under chilling temperature and strong light stress conditions. Ji, BH,Zhu, SQ,Jiao, DM. 2002

[4]Energy dissipation in photosystem 2 complexes of peanut leaves subjected to light pulses. Li, Xin-Guo,Guo, Feng,Meng, Jing-Jing,Yang, Sha,Picimbon, Jean-Francois,Li, Xin-Guo,Guo, Feng,Meng, Jing-Jing,Yang, Sha,Wan, Shu-Bo,Picimbon, Jean-Francois,Guo, Shang-Jing.

[5]Roles of xanthophylls and exogenous ABA in protection against NaCl-induced photodamage in rice (Oryza sativa L) and cabbage (Brassica campestris). Zhu, Su-Qin,Chen, Ming-Wei,Liang, Jian-Sheng,Zhu, Su-Qin,Ji, Ben-Hua,Jiao, De-Mao.

[6]Calcium contributes to photoprotection and repair of photosystem II in peanut leaves during heat and high irradiance. Yang, Sha,Wang, Fang,Guo, Feng,Meng, Jing-Jing,Li, Xin-Guo,Yang, Sha,Guo, Feng,Meng, Jing-Jing,Li, Xin-Guo,Wan, Shu-Bo,Wang, Fang. 2015

[7]Changes in unsaturated levels of fatty acids in thylakoid PSII membrane lipids during chilling-induced resistance in rice. Zhu, Su-Qin,Yu, Chun-Mei,Liu, Xin-Yan,Ji, Ben-Hua,Jiao, De-Mao. 2007

[8]Photochemical efficiency of PSII and characteristics of photosynthetic CO2 exchange in Indica and Japonica subspecies of rice and their reciprocal cross F-1 hybrids under photoinhibitory conditions. Ji, BH,Jiao, DM. 1999

[9]Relationships between D1 protein, xanthophyll cycle and photodamage-resistant capacity in rice (Orysa sativa L.). Ji, BH,Jiao, DM.

[10]Ferredoxin-quinone reductase benefits cyclic electron flow around photosystem 1 in tobacco leaves upon exposure to chilling stress under low irradiance. Li, X. -G.,Xu, P. -L.,Zhao, J. -P.,Meng, J. -J.,He, Q. -W.. 2006

[11]Photochemical and antioxidative responses of the glume and flag leaf to seasonal senescence in wheat. Kong, Lingan,Sun, Mingze,Xie, Yan,Wang, Fahong,Zhao, Zhendong,Sun, Mingze. 2015

[12]An integration of photosynthetic traits and mechanisms that can increase crop photosynthesis and grain production. Black, CC,Tu, ZP,Counce, PA,Yao, PF,Angelov, MN. 1995

[13]Roles of the transthylakoid proton gradient and xanthophyll cycle in the non-photochemical quenching of the green alga Ulva linza. Zhang, Xiaowen,Mou, Shanli,Cao, Shaona,Fan, Xiao,Xu, Dong,Ye, Naihao.

[14]Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice. Fang, Jun,Chai, Chenglin,Li, Chunlai,Tang, Jiuyou,Huang, Zejun,Guo, Xiaoli,Sun, Changhui,Liu, Min,Wang, Yiqin,Cheng, Zhukuan,Chu, Chengcai,Fang, Jun,Chai, Chenglin,Li, Chunlai,Tang, Jiuyou,Huang, Zejun,Guo, Xiaoli,Sun, Changhui,Liu, Min,Wang, Yiqin,Cheng, Zhukuan,Chu, Chengcai,Fang, Jun,Chai, Chenglin,Li, Chunlai,Tang, Jiuyou,Huang, Zejun,Guo, Xiaoli,Qian, Qian,Sun, Lei,Zhang, Yan,Lu, Qingtao,Lu, Congming,Han, Bin,Chen, Fan.

[15]DEFICIENCY OF PHYTOCHROME B ALLEVIATES CHILLING-INDUCED PHOTOINHIBITION IN RICE. Yang, Jian-Chao,Han, Guo-Liang,Sui, Na,Wang, Bao-Shan,Li, Meng,Xie, Xian-Zhi. 2013

[16]Photosynthetic Characteristics of a Super High Yield Cultivar of Winter Wheat During Late Growth Period. Meng Qing-wei,Tian Ji-chun,Zhao Shi-jie,Sui Na,Li Meng. 2010

[17]Analysis of Delta pH and the xanthophyll cycle in NPQ of the Antarctic sea ice alga Chlamydomonas sp ICE-L. Mou, Shanli,Zhang, Xiaowen,Ye, Naihao,Xu, Dong,Fan, Xiao,Miao, Jinlai,An, Meiling,Cao, Shaona. 2013

[18]Changes in Violaxanthin Deepoxidase Activity and Unsaturation of Thylakoid Membrane Lipids in Indica and Japonica Rice Under Chilling Condition and Strong Light. Ji, BH,Cao, YY,Xie, HS,Zhu, SQ,Ma, Q,Jian, DM.

[19]A transthylakoid proton gradient and inhibitors induce a non-photochemical fluorescence quenching in unicellular algae Nannochloropsis sp.. Cao, Shaona,Wang, Yitao,Wang, Wenqi,Cao, Shaona,Zhang, Xiaowen,Xu, Dong,Fan, Xiao,Mou, Shanli,Ye, Naihao.

[20]Occurrence of the PsbS and LhcSR products in the green alga Ulva linza and their correlation with excitation pressure. Zhang, Xiaowen,Ye, Naihao,Mou, Shanli,Xu, Dong,Fan, Xiao.

作者其他论文 更多>>