Comparison of ELM, GANN, WNN and empirical models for estimating reference evapotranspiration in humid region of Southwest China
文献类型: 外文期刊
第一作者: Feng, Yu
作者: Feng, Yu;Gong, Daozhi;Cui, Ningbo;Zhao, Lu;Cui, Ningbo;Zhao, Lu;Cui, Ningbo;Hu, Xiaotao
作者机构:
关键词: Reference evapotranspiration;Extreme learning machine;Backpropagation neural networks;Wavelet neural networks;Southwest China
期刊名称:JOURNAL OF HYDROLOGY ( 影响因子:5.722; 五年影响因子:6.033 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: Reference evapotranspiration (ET0) is an essential component in hydrological ecological processes and agricultural water management. Accurate estimation of ET0 is of importance in improving irrigation efficiency, water reuse and irrigation scheduling. FAO-56 Penman-Monteith (P-M) model is recommended as the standard model to estimate ET. Nevertheless, its application is limited due to the lack of required meteorological data. In this study, trained extreme learning machine (ELM), backpropagation neural networks optimized by genetic algorithm (GANN) and wavelet neural networks (WNN) models were developed to estimate ET0, and the performances of ELM, GANN,. WNN, two temperature-based (Hargreaves and modified Hargreaves) and three radiation-based (Makkink, Priestley-Taylor and Ritchie) ET0 models in estimating ET were evaluated in a humid area of Southwest China. Results indicated that among the new proposed models, ELM and GANN models were much better than WNN model, and the temperature based ELM and GANN models had better performance than Hargreaves and modified Hargreaves models, radiation-based ELM and GANN models had higher precision than Makkink, Priestley-Taylor and Ritchie models. Both of radiation-based ELM (RMSE ranging 0.312-0.332 mm d(-1), E-ns ranging 0.918-0.931, MAE ranging 0.260-0.300 mm d(-1)) and GANN models (RMSE ranging 0300-0.333 mm d(-1), E-ns ranging 0.916-0.941, MAE ranging 0.2580-0.303 mm d(-1)) could estimate ET0 at an acceptable accuracy level, and are highly recommended for estimating ET0 without adequate meteorological data. (C) 2016 Elsevier B.V. All rights reserved.
分类号: P33
- 相关文献
作者其他论文 更多>>
-
Effect of nitrogen fertilizer management on N2O emission and NH3 volatilization from orchards
作者:Wen, Shenglin;Cui, Ningbo;Xing, Liwen;Wu, Zongjun;Zhang, Yixuan;Wang, Zhihui;Wen, Shenglin;Cui, Ningbo;Xing, Liwen;Wu, Zongjun;Zhang, Yixuan;Wang, Zhihui;Gong, Daozhi;Wang, Jiaxin
关键词:Nitrogen fertilizer; Management practices; Soil properties; Influencing factors; Meta-analysis
-
Estimating reference crop evapotranspiration using optimized empirical methods with a novel improved Grey Wolf Algorithm in four climatic regions of China
作者:Dong, Juan;Xing, Liwen;Cui, Ningbo;Guo, Li;Liang, Chuan;Zhao, Lu;Wang, Zhihui;Gong, Daozhi
关键词:Empirical parameter; Intelligence optimization algorithm; Radiation -based method; Humidity -based method; Temperature -based method
-
Estimating reference crop evapotranspiration using improved convolutional bidirectional long short-term memory network by multi-head attention mechanism in the four climatic zones of China
作者:Dong, Juan;Xing, Liwen;Cui, Ningbo;Zhao, Lu;Guo, Li;Wang, Zhihui;Tan, Mingdong;Du, Taisheng;Gong, Daozhi
关键词:Hybrid deep learning model; Multivariate Adaptive Regression Splines; Empirical model; Limited meteorological input; Cross-validation strategy
-
Optimization of multi-dimensional indices for kiwifruit orchard soil moisture content estimation using UAV and ground multi-sensors
作者:Zhu, Shidan;Cui, Ningbo;Guo, Li;Jiang, Shouzheng;Wu, Zongjun;Lv, Min;Chen, Fei;Liu, Quanshan;Wang, Mingjun;Jin, Huaan;Jin, Xiuliang
关键词:Root-zone soil moisture content; UAV-Ground multi-sensor data; Ti-VIi-CWSI space; Ensemble learning model; Planted-by-planted-grid mapping
-
Estimating daily kiwifruit evapotranspiration under regulated deficit irrigation strategy using optimized surface resistance based model
作者:Xing, Liwen;Cui, Ningbo;Guo, Li;Wu, Zongjun;Wen, Shenglin;Zhao, Lu;Liu, Chunwei;Zhao, Long;Jiang, Xuelian;Gong, Daozhi
关键词:Water consumption; Jarvis model; Clumping model; Soil water deficit coefficient; Whale Optimization Algorithm
-
Optimizing irrigation and nitrogen fertilizer management to improve apple yield, quality, water productivity and nitrogen use efficiency: A global meta-analysis
作者:Wen, Shenglin;Cui, Ningbo;Xing, Liwen;Wu, Zongjun;Zhang, Yixuan;Wang, Zhihui;Wen, Shenglin;Cui, Ningbo;Xing, Liwen;Wu, Zongjun;Zhang, Yixuan;Wang, Zhihui;Li, Mingjun;Gong, Daozhi;Fan, Junliang
关键词:Water input; Nitrogen input; Water -saving potentials; Nitrogen -saving potentials; Apple production
-
Optimizing deficit drip irrigation to improve yield,quality, and water productivity of apple in Loess Plateau of China
作者:Wen, Shenglin;Cui, Ningbo;Xing, Liwen;Wu, Zongjun;Zhang, Yixuan;Wang, Zhihui;Wang, Yaosheng;Gong, Daozhi;Zhao, Long;Fan, Junliang
关键词:Deficit drip irrigation; Apple; Yield; Chemical quality; Water productivity; Fuzzy Borda combined model