Comparative proteomic analysis of seed embryo proteins associated with seed storability in rice (Oryza sativa L) during natural aging

文献类型: 外文期刊

第一作者: Gao, Jiadong

作者: Gao, Jiadong;Chen, Zhongjian;Luo, Yi;Cui, Baiyuan;Liu, Jun;Gao, Jiadong;Chen, Guanghui;Fu, Hua;Zhou, Xinqiao

作者机构:

关键词: Rice (Oryza sativa L);Proteomics;Seed storability;Natural aging;Glutathione-related proteins;Seed storage proteins

期刊名称:PLANT PHYSIOLOGY AND BIOCHEMISTRY ( 影响因子:4.27; 五年影响因子:4.816 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Seed storability is considered an important trait in rice breeding; however, the underlying regulating mechanisms remain largely unknown. Here, we carried out a physiological and proteomic study to identify proteins possibly related to seed storability under natural conditions. Two hybrid cultivars, IIYou998 (IIY998) and BoYou998 (BY998), were analyzed in parallel because they share the same restorer line but have significant differences in seed storability. After a 2-year storage period, the germination percentage of IIY998 was significantly lower than that of BY998, whereas the level of malondialdehyde was reversed, indicating that IIY998 seeds may suffer from more severe damage than BY998 during storage. However, we did not find correlation between activities of antioxidant enzymes of superoxide dismutase, peroxidase, and catalase and seed storability. We identified 78 embryo proteins in embryo whose abundance varied more than 3-fold different during storage or between IIY998 and BY998. More proteins changed in abundance in IIY998 embryo (67 proteins) during storage than in BY998 (10 proteins). Several redox regulation proteins, mainly glutathione-related proteins, exhibited different degree of change during storage between BY998 and IIY998 and might play an important role protecting embryo proteins from oxidation. In addition, some disease/defense proteins, including DNA-damage-repair/toleration proteins, and a putative late embryogenesis abundant protein were significantly down regulated in IIY998, whereas their levels did not change in BY998, indicating that they might be correlated with seed storability. Further studies on these candidate seed storage proteins might help improve our understanding of seed aging. (C) 2016 Elsevier Masson SAS. All rights reserved.

分类号: Q945`Q946

  • 相关文献

[1]Mapping QTLs related to rice seed storability under natural and artificial aging storage conditions. Ngo Thi Hang,Lin, Qiuyun,Liu, Linglong,Liu, Xi,Liu, Shijia,Wang, Wenyan,Li, Linfang,He, Niqing,Liu, Zhou,Jiang, Ling,Wan, Jianmin,Wan, Jianmin.

[2]Genetic dissection of seed storability using two different populations with a same parent rice cultivar N22. Lin, Qiuyun,Wang, Wenyan,Ren, Yakun,Jiang, Yimei,Sun, Ailing,Qian, Ying,Zhang, Yifei,He, Niqing,Ngo Thi Hang,Liu, Zhou,Li, Linfang,Liu, Linglong,Jiang, Ling,Wan, Jianmin,Wan, Jianmin.

[3]Proteomic analysis of seed storage proteins in wild rice species of the Oryza genus. Jiang, Chunmiao,Zhang, Cheng,Huang, Xingqi,Jiang, Chunmiao,Cheng, Zaiquan,Yu, Tengqiong,Zhong, Qiaofang,Huang, Xingqi,Shen, J. Qingxi. 2014

[4]Gene networks in the synthesis and deposition of protein polymers during grain development of wheat. She, Maoyun,Ye, Xingguo,Belgard, M.,Ma, Wujun,Belgard, M.,Ma, Wujun,Yan, Yueming,Howit, C..

[5]Desiccation tolerance and storability of seeds in Hopea mollissima C.Y. Wu. Lan, Q. Y.,Tan, Y. H.,Yu, L.,Ma, S. M.,Yang, M. Z..

[6]Identification of quantitative trait loci for seed storability in rice (Oryza sativa L.). Li, Linfang,Lin, Qiuyun,Liu, Shijia,Liu, Xi,Wang, Wenyan,Ngo Thi Hang,Liu, Feng,Zhao, Zhigang,Jiang, Ling,Wan, Jianmin. 2012

[7]Protein Kinase LTRPK1 Influences Cold Adaptation and Microtubule Stability in Rice. Liu, Wei,Fang, Xiaoliang,Wang, Qingguo,Li, Zhen,Yao, Fangyin,Hou, Lei,Ji, Shuxia,Dai, Shaojun,Fang, Xiaoliang. 2013

[8]Validating a segment on the short arm of chromosome 6 responsible for genetic variation in the hull silicon content and yield traits of rice. Dai, Wei-Min,Zhang, Ke-Qin,Wu, Ji-Rong,Wang, Lei,Duan, Bin-Wu,Zheng, Kang-Le,Zhuang, Jie-Yun,Dai, Wei-Min,Cai, Run,Dai, Wei-Min. 2008

[9]QTL Identification and Fine Mapping for Seed Storability in Rice (Oryza sativa L.). Li, C. S.,Wang, Z. F.,Zhang, H. S.,Li, C. S.,Shao, G. S.,Wang, L.,Mao, Y. J.,Wang, X. Q.,Zhang, X. H.,Liu, S. T..

[10]Du1, encoding a novel Prp1 protein, regulates starch biosynthesis through affecting the splicing of Wx(b) supercript stop pre-mRNAs in rice (Oryza sativa L.). Zeng, Dali,Yan, Meixian,Wang, Yonghong,Liu, Xinfang,Qian, Qian,Li, Jiayang.

[11]Identification of qRL7, a major quantitative trait locus associated with rice root length in hydroponic conditions. Wang, Huimin,Zhan, Xiaodeng,Zhai, Rongrong,Wu, Weiming,Shen, Xihong,Cao, Liyong,Cheng, Shihua,Xu, Xiaoming,Dai, Gaoxing.

[12]Modification of plant height via RNAi suppression of OsGA20ox2 gene in rice. Qiao, Feng,Yang, Qing,Wang, Chun-Lian,Fan, Ying-Lun,Wu, Xue-Feng,Zhao, Kai-Jun. 2007

[13]Albino midrib 1, encoding a putative potassium efflux antiporter, affects chloroplast development and drought tolerance in rice. Sheng, Peike,Tan, Junjie,Liu, Xuanming,Sheng, Peike,Tan, Junjie,Jin, Mingna,Wu, Fuqing,Zhou, Kunneng,Ma, Weiwei,Heng, Yueqin,Wang, Jiulin,Guo, Xiuping,Zhang, Xin,Cheng, Zhijun,Wan, Jianmin,Liu, Linglong,Wang, Chunming,Wan, Jianmin.

[14]Mapping of the genetic determinant for grain size in rice using a recombinant inbred line (RIL) population generated from two elite indica parents. Liu, Dilin,Kang, Meihua,Wang, Feng,Liu, Wuge,Fu, Chongyun,Li, Jinhua,Zhu, Manshan,Zeng, Xueqin,Liao, Yilong,Liu, Zhenrong,Huang, Huijun,Liu, Dilin,Kang, Meihua,Wang, Feng,Liu, Wuge,Fu, Chongyun,Li, Jinhua,Zhu, Manshan,Zeng, Xueqin,Liao, Yilong,Liu, Zhenrong,Huang, Huijun.

[15]The effect of salinity pretreatment on Cd accumulation and Cd-induced stress in BADH-transgenic and nontransgenic rice seedlings. Shao, Guosheng,Zhang, Guoping,Shao, Guosheng,Chen, Mingxue,Wang, Weixia. 2008

[16]Selenium uptake, dynamic changes in selenium content and its influence on photosynthesis and chlorophyll fluorescence in rice (Oryza sativa L.). Tang, Shuanhu,Huang, Xu,Zhang, Fabao,Pang, Yuwan,Huang, Qiaoyi,Yi, Qiong,Zhang, Mu,Tang, Shuanhu,Huang, Xu,Zhang, Fabao,Pang, Yuwan,Huang, Qiaoyi,Yi, Qiong,Zhang, Mu,Tang, Shuanhu,Huang, Xu,Zhang, Fabao,Pang, Yuwan,Huang, Qiaoyi,Yi, Qiong.

[17]Introduction of cecropin B gene into rice (Oryza sativa L) by particle bombardment and analysis of transgenic plants. Huang, DN,Zhu, B,Yang, W,Xue, R,Xiao, H,Tian, WZ,Li, LC,Dai, SH. 1996

[18]iTRAQ-proteomics and bioinformatics analyses of mammary tissue from cows with clinical mastitis due to natural infection with Staphylococci aureus. Huang, Jinming,Luo, Guojing,Zhang, Zijing,Wang, Xiuge,Ju, Zhihua,Qi, Chao,Zhang, Yan,Wang, Changfa,Li, Rongling,Li, Jianbin,Yin, Weijun,Zhong, Jifeng,Luo, Guojing,Zhang, Zijing,Xu, Yinxue,Moisa, Sonia J.,Loor, Juan J.,Loor, Juan J.,Moisa, Sonia J.,Loor, Juan J.. 2014

[19]A genotypic difference in primary root length is associated with the inhibitory role of transforming growth factor-beta receptor-interacting protein-1 on root meristem size in wheat. He, Xue,Fang, Jingjing,Li, Jingjuan,Qu, Baoyuan,Ren, Yongzhe,Ma, Wenying,Zhao, Xueqiang,Li, Bin,Wang, Daowen,Li, Zhensheng,Tong, Yiping,Fang, Jingjing,Li, Jingjuan,Ren, Yongzhe. 2014

[20]Comparative proteomics of peanut gynophore development under dark and mechanical stimulation. Sun, Yong,Wang, Qingguo,Li, Zhen,Hou, Lei,Liu, Wei,Dai, Shaojun,Sun, Yong.

作者其他论文 更多>>