Association analysis for detecting significant single nucleotide polymorphisms for phosphorus-deficiency tolerance at the seedling stage in soybean [Glycine max (L) Merr.]

文献类型: 外文期刊

第一作者: Ning, Lihua

作者: Ning, Lihua;Kan, Guizhen;Du, Wenkai;Wang, Qing;Zhang, Guozheng;Cheng, Hao;Yu, Deyue;Ning, Lihua;Guo, Shiwei

作者机构:

关键词: association mapping;phosphorus-deficiency tolerance;seedling stage;soybean [Glycine max (L) Merr.]

期刊名称:BREEDING SCIENCE ( 影响因子:2.086; 五年影响因子:2.632 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Tolerance to low-phosphorus soil is a desirable trait in soybean cultivars. Previous quantitative trait locus (QTL) studies for phosphorus-deficiency tolerance were mainly derived from bi-parental segregating populations and few reports from natural population. The objective of this study was to detect QTLs that regulate phosphorus-deficiency tolerance in soybean using association mapping approach. Phosphorus-deficiency tolerance was evaluated according to five traits (plant shoot height, shoot dry weight, phosphorus concentration, phosphorus acquisition efficiency and use efficiency) comprising a conditional phenotype at the seedling stage. Association mapping of the conditional phenotype detected 19 SNPs including 13 SNPs that were significantly associated with the five traits across two years. A novel cluster of SNPs, including three SNPs that consistently showed significant effects over two years, that associated with more than one trait was detected on chromosome 3. All favorable alleles, which were determined based on the mean of conditional phenotypic values of each trait over the two years, could be pyramided into one cultivar through parental cross combination. The best three cross combinations were predicted with the aim of simultaneously improving phosphorus acquisition efficiency and use efficiency. These results will provide a thorough understanding of the genetic basis of phosphorus deficiency tolerance in soybean.

分类号: S33

  • 相关文献

[1]Association Mapping of Ferrous, Zinc, and Aluminum Tolerance at the Seedling Stage in Indica Rice using MAGIC Populations. Qian, Qian,Ye, Guoyou,Meng, Lijun,Zhao, Xiangqian,Ponce, Kimberly,Ye, Guoyou,Wang, Baoxiang,Zhao, Xiangqian. 2017

[2]Mapping QTLs for phosphorus-deficiency tolerance at wheat seedling stage. Su, JY,Xiao, YM,Li, M,Liu, QY,Li, B,Tong, YP,Jia, JZ,Li, ZS. 2006

[3]Genome-wide association study of seedling stage salinity tolerance in temperate japonica rice germplasm. Batayeva, Dariga,Dyuskalieva, Gulzhamal,Labaco, Benedick,Ye, Changrong,Vergara, Georgina,Reinke, Russell,Leung, Hei,Ye, Changrong,Li, Xiaolin,Usenbekov, Bakdaulet,Rysbekova, Aiman. 2018

[4]Identification of QTLs for cold tolerance at seedling stage in rice (Oryza sativa L.) using two distinct methods of cold treatment. Zhang, Shaohong,Liu, Bin,Zhao, Junliang,Wang, Xiaofei,Yang, Tifeng,Huang, Zhanghui,Zheng, Jingsheng,Peng, Shaobing,Leung, Hei. 2014

[5]Identification of quantitative trait loci for drought tolerance at seedling stage by screening a large number of introgression lines in maize. Hao, Z.,Liu, X.,Li, X.,Xie, C.,Li, M.,Zhang, D.,Zhang, S.,Hao, Z.,Xu, Y..

[6]Genetic diversity and association mapping for salinity tolerance in Bangladeshi rice landraces. Emon, Reza M.,Fan, Yeyang,Emon, Reza M.,Islam, Mirza M.,Halder, Jyotirmoy. 2015

[7]Genetic Analysis on Characteristics to Measure Drought Resistance Using Dongxiang Wild Rice (Oryza rufupogon Griff.) and Its Derived Backcross Inbred Lines Population at Seedling Stage. Hu Biao-lin,Zhang Tao,Wan Yong,Li Xia,Xie Jian-kun,Hu Biao-lin,Fu Xue-qin,Huang Yun-hong,Dai Liang-fang,Luo Xiang-dong,Xie Jian-kun. 2011

[8]Chromosomal Location of Traits Associated with Wheat Seedling Water and Phosphorus Use Efficiency under Different Water and Phosphorus Stresses. Cao, Hong-Xing,Zhang, Zheng-Bin,Xu, Ping,Shao, Hong-Bo,Sun, Cheng-Xu,Shao, Hong-Bo,Song, Wei-Yi,Shao, Hong-Bo. 2009

[9]QTL mapping for seedling traits associated with low-nitrogen tolerance using a set of advanced backcross introgression lines of rice. Zhao, Chun-fang,Zhou, Li-hui,Zhang, Ya-dong,Zhu, Zhen,Chen, Tao,Zhao, Qing-yong,Yao, Shu,Yu, Xin,Wang, Cai-lin. 2014

[10]Correlation of the corn compensatory growth mechanism after post-drought rewatering with cytokinin induced by root nitrate absorption. Wang, Xiao-Ling,Wang, Jing-Jing,Hou, Xiao-Gai,Zhao, Wei,Shi, Jiang,Zhang, You-Fu,Qi, Lin,Li, Xue-Lin,Dong, Pu-Hui,Zhang, Li-Xia,Xu, Guo-Wei,Gan, Hong-Bing,Sun, Run-Hong.

[11]Association mapping of yield-related traits and SSR markers in wild soybean (Glycine sofa Sieb. and Zucc.). Hu, Zhenbin,Zhang, Dan,Zhang, Guozheng,Kan, Guizhen,Hong, Delin,Yu, Deyue,Hu, Zhenbin,Zhang, Dan. 2014

[12]Association mapping analysis of fiber yield and quality traits in Upland cotton (Gossypium hirsutum L.). Mulugeta Seyoum Ademe,Du, Xiongming,Jia, Yinhua,Shoupu He,Zhaoe Pan,Junling Sun,Qinglian Wang,Hongde Qin,Jinhai Liu,Hui Liu,Jun Yang,Dongyong Xu,Jinlong Yang,Zhiying Ma,Jinbiao Zhang,Zhikun Li,Zhongmin Cai,Xuelin Zhang,Xin Zhang,Aifen Huang,Xianda Yi,Guanyin Zhou,Lin Li,Haiyong Zhu,Baoyin Pang,Liru Wang,Yinhua Jia,Xiongming Du.

[13]Association of Candidate Genes With Submergence Response in Perennial Ryegrass. Wang, Xicheng,Wang, Xicheng,Jiang, Yiwei,Pei, Zhongyou,Liu, Huifen,Jiang, Yiwei,Zhao, Xiongwei,Xiao, Xiangye,Zhao, Xiongwei,Song, Xin. 2017

[14]Identification of genome-wide single-nucleotide polymorphisms (SNPs) associated with tolerance to chromium toxicity in spring wheat (Triticum aestivum L.). Almas, Fakhrah,Hassan, Adeel,Bibi, Arfa,Ali, Masab,Lateef, Sadia,Mahmood, Tariq,Quraishi, Umar Masood,Rasheed, Awais. 2018

[15]Genetic dissection of seminal root architecture in elite durum wheat germplasm. Sanguineti, M. C.,Li, S.,Maccaferri, M.,Corneti, S.,Rotondo, F.,Chiari, T.,Tuberosa, R.. 2007

[16]Association Mapping for Aluminum Tolerance in a Core Collection of Rice Landraces. Zhang, Peng,Zhong, Kaizhen,Tong, Hanhua,Zhang, Peng,Shahid, Muhammad Qasim,Li, Jinquan,Li, Jinquan. 2016

[17]Association Analysis of the Amino Acid Contents in Rice. Zhao, Weiguo,Chung, Jong-Wook,Park, Yong-Jin,Zhao, Weiguo,Park, Eun-Jin,Chung, Ill-Min,Ahn, Joung-Kuk,Kim, Gwang-Ho,Zhao, Weiguo. 2009

[18]Genetic diversity and marker-trait associations in a collection of Pak-choi (Brassica rapa L. ssp chinensis Makino) Accessions. Yu, Shuancang,Zhang, Fenglan,Wang, Xiaoyi,Zhao, Xiuyun,Zhang, Deshuang,Yu, Yangjun,Xu, Jiabing. 2010

[19]Association Mapping of Grain Weight, Length and Width in Barley (Hordeum vulgare) Breeding Germplasm. Liu, X.,Ma, L.,Feng, Z.,Lai, Yunping,Yu, Y.,Wan, H.,Zhang, Z.,Wang, L.,Leng, Y.,Yang, W.,Ma, L.. 2017

[20]An analysis of population structure and linkage disequilibrium using multilocus data in 187 maize inbred lines (Retracted article. See vol. 28, pg. 135, 2011). Xie, Chuanxiao,Li, Mingshun,Li, Xinhai,Xiao, Muji,Hao, Zhuanfang,Zhang, Shihuang,Warburton, Marilyn,Zhao, Qi. 2008

作者其他论文 更多>>