Changes in the activities of starch metabolism enzymes in rice grains in response to elevated CO2 concentration

文献类型: 外文期刊

第一作者: Xie, Li-Yong

作者: Xie, Li-Yong;Zhao, Hong-Liang;Lin, Er-Da;Feng, Yong-Xiang

作者机构:

关键词: FACE;Rice;Metabolic enzyme;Enzyme activity;ADPG pyrophosphorylase enzyme;Starch synthesis enzyme;Starch branching enzyme

期刊名称:INTERNATIONAL JOURNAL OF BIOMETEOROLOGY ( 影响因子:3.787; 五年影响因子:3.811 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The global atmospheric CO2 concentration is currently (2012) 393.1 mu mol mol(-1), an increase of approximately 42 % over pre-industrial levels. In order to understand the responses of metabolic enzymes to elevated CO2 concentrations, an experiment was conducted using the Free Air CO2 Enrichment (FACE )system. Two conventional japonica rice varieties (Oryza sativa L. ssp. japonica) grown in North China, Songjing 9 and Daohuaxiang 2, were used in this study. The activities of ADPG pyrophosphorylase, soluble and granule-bound starch synthases, and soluble and granule-bound starch branching enzymes were measured in rice grains, and the effects of elevated CO2 on the amylose and protein contents of the grains were analyzed. The results showed that elevated CO2 levels significantly increased the activity of ADPG pyrophosphorylase at day 8, 24, and 40 after flower, with maximum increases of 56.67 % for Songjing 9 and 21.31 % for Daohuaxiang 2. Similarly, the activities of starch synthesis enzymes increased significantly from the day 24 after flower to the day 40 after flower, with maximum increases of 36.81 % for Songjing 9 and 66.67 % for Daohuaxiang 2 in soluble starch synthase (SSS), and 25.00 % for Songjing 9 and 36.44 % for Daohuaxiang 2 in granule-bound starch synthase (GBSS), respectively. The elevated CO2 concentration significantly increased the activity of soluble starch branching enzyme (SSBE) at day 16, 32, and 40 after flower, and also significantly increased the activity of granule-bound starch branching enzyme (GBSBE) at day 8, 32, and 40 after flower. The elevated CO2 concentration increased the peak values of enzyme activity, and the timing of the activity peaks for SSS and GBSBE were earlier in Songjing 9 than in Daohuaxiang 2. There were obvious differences in developmental stages between the two varieties of rice, which indicated that the elevated CO2 concentration increased enzyme activity expression and starch synthesis, affecting the final contents of starch and protein in the rice grains. Our results will provide a foundation for understanding the physiological mechanisms of rice yield under elevated atmospheric CO2 concentrations.

分类号: Q142.2

  • 相关文献

[1]Comparison of amylopectin structure and activities of key starch synthesis enzymes in the grains of rice single-segment substitution lines with different Wx alleles. Teng, Bin,Zhang, Ying,Wu, Jingde,Li, Zefu,Luo, Zhixiang,Yang, Jianbo,Zhang, Chen.

[2]A single amino acid mutation of OsSBEIIb contributes to resistant starch accumulation in rice. Yang, Ruifang,Bai, Jianjiang,Fang, Jun,Piao, Zhongze,Wang, Ying,Lee, Gangseob.

[3]Proteomic Analysis of Goat Longissimus dorsi Muscles with Different Drip Loss Values Related to Meat Quality Traits. Wang, Zhenyu,He, Fan,Rao, Weili,Ni, Na,Zhang, Dequan,Shen, Qingwu. 2016

[4]Climate change impacts on crop yield and quality with CO2 fertilization in China. Lin, ED,Xiong, W,Ju, H,Xu, YL,Li, Y,Bai, LP,Xie, LY.

[5]Evaluation and characterization of an endosperm-specific sbeIIa promoter in wheat. Miao, HM,Fleming, JE,Lu, DB,Han, JF.

[6]Phylogeny and expression pattern of starch branching enzyme family genes in cassava (Manihot esculenta Crantz) under diverse environments. Pei, Jinli,Wang, Huijun,Pei, Jinli,Xia, Zhiqiang,Liu, Chen,Chen, Xin,Ma, Pingan,Lu, Cheng,Wang, Wenquan.

[7]Identification of a UDP-glucose pyrophosphorylase from cotton (Gossypium hirsutum L.) involved in cellulose biosynthesis in Arabidopsis thaliana. Qinghua Wang,Xue Zhang,Fuguang Li,Yuxia Hou,Xingliang Liu,Xueyan Zhang.

[8]Effects of Bacterial-Feeding Nematodes and Glucose on Phenanthrene Removal by Pseudomonas putida. Jing Yongping,Li Yan,Zhang Yingpeng,Liu Ping,Sun Ming,Jing Yongping,Li Yan,Zhang Yingpeng,Jing Yongping,Liu Zhaohui,Luo, Jiafa. 2017

[9]Response of the enzymes to nitrogen applications in cotton fiber (Gossypium hirsutum L.) and their relationships with fiber strength. Wang YouHua,Feng Ying,Xu NaiYin,Chen BingLin,Ma RongHui,Zhou ZhiGuo,Xu NaiYin. 2009

[10]Physiological and morphological responses induced by alpha-particle radiation on Arabidopsis thaliana embryos. Ren, J.,Liu, L.,Fu, S. L.,Ren, J.,Jin, X. L.,Ding, Z. C.,Liu, L.. 2014

[11]Canonical correspondence analysis of soil heavy metal pollution, microflora and enzyme activities in the Pb-Zn mine tailing dam collapse area of Sidi village, SW China. Li, Zhongyi,Li, Qiang,Hu, Qingjing,Jin, Zhenjiang,Li, Zhongyi,Li, Qiang,Hu, Qingjing,Jin, Zhenjiang,Yang, Rongmei,Tang, Huafeng,Li, Min,Huang, Bingfu,Zhang, Jiayu,Li, Guiwen,Li, Zhongyi,Hu, Qingjing. 2015

[12]Sucrose and citric acid accumulations in melon genotypes with different sugar and acid contents. Tang, Mi,Zhang, Bao-cai,Xie, Jun-jun,Bie, Zhi-long,Wu, Ming-zhu,Yi, Hong-ping,Feng, Jong-xin,Tang, Mi. 2012

[13]Molecular characterization of a cathepsin F-like protease in Trichinella spiralis. Qu, Zi-gang,Ma, Xue-ting,Li, Wen-hui,Zhang, Nian-zhang,Yue, Long,Cui, Jian-min,Cai, Jian-ping,Jia, Wan-zhong,Fu, Bao-quan,Cai, Jian-ping,Jia, Wan-zhong,Fu, Bao-quan. 2015

[14]Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation. Zhang, Shuiqing,Guo, Doudou,Huang, Shaomin,Ai, Chao,Zhang, Xin,Zhou, Wei. 2018

[15]Physical changes and physiological characteristics of red and green peel during nectarine (cv. Hu018) maturation. Su, Mingshen,Chen, Kunsong,Zhang, Bo,Xu, Changjie,Sun, Chongde,Zhang, Jiukai,Li, Xian,Xi, Wanpeng,Su, Mingshen,Ye, Zhengwen,Wu, Aizhong,Guo, Juan. 2012

[16]Molecular characterization, expression and activity of glucokinase in golden pompano, Trachinotus ovatus: Response of its expression to carbohydrate in the diet. Zhou, Chuanpeng,Wang, Jun,Wang, Yun,Lin, Heizhao,Huang, Zhong,Yu, Wei. 2018

[17]The effect of long-term reclamation on enzyme activities and microbial community structure of saline soil at Shangyu, China. Liu, Chen,Xu, JianMing,Liu, Chen,Ding, NengFei,Fu, QingLin,Guo, Bin,Lin, YiCheng,Li, Hua,Li, Ningyu. 2013

[18]Soil microbial communities and enzyme activities in a reclaimed coastal soil chronosequence under rice-barley cropping. Fu, Qinglin,Liu, Chen,Ding, Nengfei,Lin, Yicheng,Guo, Bin,Luo, Jiafa,Wang, Hailong. 2012

[19]Immunolocation and enzyme activity analysis of Cryptosporidium parvum enolase. Mi, Rongsheng,Chen, Zhaoguo,Mi, Rongsheng,Yang, Xiaojiao,Huang, Yan,Cheng, Long,Lu, Ke,Han, Xiangan,Chen, Zhaoguo,Mi, Rongsheng,Yang, Xiaojiao,Huang, Yan,Cheng, Long,Lu, Ke,Han, Xiangan,Chen, Zhaoguo. 2017

[20]EFFECTS OF VITRIFICATION PROTOCOL ON THE LACTATE DEHYDROGENASE AND TOTAL ATPASE ACTIVITIES OF CHINESE MITTEN CRAB Eriocheir sinensis EMBRYOS. Huang, Xiaorong,Feng, Guangpeng,Zhao, Feng,Liu, Jianyi,Zhang, Tao,Wang, Yu,Zhuang, Ping. 2016

作者其他论文 更多>>