Co-expression of MtDREB1C and RcXET Enhances Stress Tolerance of Transgenic China Rose (Rosa chinensis Jacq.)

文献类型: 外文期刊

第一作者: Chen, Ji-Ren

作者: Chen, Ji-Ren;Chen, Yan-Bin;Deng, Zi-Niu;Li, Yan-Lin;Jiao, Jin-Xia;Xiong, Xing-Yao;Xiong, Xing-Yao;Ziemianska, Monika;Niedzwiecka-Filipiak, Irena;Liu, Rong

作者机构:

关键词: Rose;DRE-binding;Xyloglucan endotransglycosylase;Stress tolerance;Gene pyramiding

期刊名称:JOURNAL OF PLANT GROWTH REGULATION ( 影响因子:4.169; 五年影响因子:4.038 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The xyloglucan endotransglycosylase gene RcXET of China Rose (Rosa chinensis Jacq.) and the MtDREB1C gene of Medicago truncatula Gaertn. were pyramided into the plant expression vector pBin438 and transformed into China Rose. Southern blot and Northern blot analyses showed that the heterologous gene MtDREB1C was integrated into the genome of surviving transgenic rose plants and expressed at different levels. Real-time PCR analysis demonstrated that robust expression of the congenetic gene RcXET was activated in the five surviving transgenic rose plants. The performance of the five transgenic lines under freezing and drought stress was superior to that of non-transformed controls. Thus, pyramiding of the genes MtDREB1C and RcXET in China Rose was more effective to enhance freezing and drought tolerance than untransformed controls. A positive correlation was observed between the expression of RcXET and the growth rate in contrast to the non-transgenic plants. The physiological assay showed that co-expression had greater effects on EC%, contents of proline, soluble sugar, photosynthesis rate, negative water potential, and turgor loss point than activities of POD and SOD under stress. The study also highlights the utility of a simple and rapid approach to express two or even more genes in one expression vector.

分类号: Q94

  • 相关文献

[1]Residents' preferences for roses, features of rose plantings and the relations between them in built-up areas of Beijing, China. Wang, Hua,Yang, Yuan,Li, Maofu,Liu, Jiashen,Jin, Wanmei,Wang, Hua,Yang, Yuan,Li, Maofu,Liu, Jiashen,Jin, Wanmei,Yang, Yuan. 2017

[2]The Rosa chinensis cv. Viridiflora Phyllody Phenotype Is Associated with Misexpression of Flower Organ Identity Genes. Yan, Huijun,Zhang, Hao,Wang, Qigang,Jian, Hongying,Qiu, Xianqin,Wang, Jihua,Tang, Kaixue,Baudino, Sylvie,Just, Jeremy,Raymond, Olivier,Bendahmane, Mohammed,Gu, Lianfeng. 2016

[3]Preliminary proteomic analysis of tobacco leaves affected by volatile organic compounds from floral scent of rose. Yu, Ping,Dong, Chao,Yao, Chunxin,Ding, Yumei,Zhou, Xiaogang,Yu, Ping,Dong, Chao,Yao, Chunxin,Ding, Yumei,Zhou, Xiaogang,Su, Yuan.

[4]AFLP-Based Genetic Diversity among the Populations of Rosa laxa in Tianshan Mountains of Xinjiang, China. Yang, S. H.,Guo, N.,Ge, W. Y.,Ge, H.. 2013

[5]Ozone effects on photosynthesis of ornamental species suitable for urban green spaces of China. Yang, Ning,Wang, Xiaoke,Chen, Yuanyuan,Zheng, Feixiang,Yang, Ning,Chen, Yuanyuan,Cotrozzi, Lorenzo,Zheng, Feixiang.

[6]Genetic analysis and pyramiding of two gall midge resistance genes (Gm-2 and Gm-6t) in rice (Oryza sativa L.). Katiyar, S,Verulkar, S,Chandel, G,Zhang, Y,Huang, B,Bennett, J. 2001

[7]Selection for Gene Pyramiding Design in Admixed Population. Xu, Lingyang,Ren, Hangxing,Sheng, Xihui,Zhang, Li,Wei, Caihong,Du, Lixin. 2011

[8]Stimulation Study of Gene Pyramiding in Animals by Marker-Assisted Selection. Zhao Fu-ping,Zhang Qin,Zhao Fu-ping. 2012

[9]Improving Muscle Inosine Monophosphate (IMP) Contents in Wenchang Chicken by Pyramiding Favorable Genotypes of ADSL and GARS-AIRS-GART Genes. Li Hui-Fang,Han Wei,Shu Jing-Ting,Zhu Yun-Fen,Zhang Xue-Yu,Chen Kuan-Wei.

[10]Marker-assisted selection of two-line hybrid rice for disease resistance to rice blast and bacterial blight. Ni, Dahu,Song, Fengshun,Ni, Jinlong,Yang, Yachun,Wei, Pengcheng,Yang, Jianbo,Li, Li,Zhang, Aifang,Wang, Chunlian,Zhao, Kaijun.

[11]Efficacy of pyramiding elite alleles for dynamic development of plant height in common wheat. Zhang, Bin,Shi, Wei,Li, Weiyu,Chang, Xiaoping,Jing, Ruilian,Zhang, Bin,Shi, Wei,Li, Weiyu,Chang, Xiaoping,Jing, Ruilian.

[12]Gene Pyramiding Optimal Design Breeding in Animals Using Evolutionary Computation. Xu, Lingyang,Du, Lixin,Zhao, Fuping. 2011

[13]Pyramiding of Bt cry1Ia8 and cry1Ba3 genes into cabbage (Brassica oleracea L. var. capitata) confers effective control against diamondback moth. Cui, Lei,Wang, Li,Liu, Yumei,Zhuang, Mu,Zhang, Yangyong,Fang, Zhiyuan,Yang, Limei,Zhang, Jie,Lang, Zhihong.

[14]Molecular genetic mapping of a high-lysine mutant gene (opaque-16) and the double recessive effect with opaque-2 in maize. Yang, WP,Zheng, YL,Zheng, WT,Feng, R. 2005

[15]Marker-assisted breeding of Xa4, Xa21 and Xa27 in the restorer lines of hybrid rice for broad-spectrum and enhanced disease resistance to bacterial blight. Luo, Yanchang,Sangha, Jatinder S.,Yin, Zhongchao,Luo, Yanchang,Wang, Shouhai,Li, Zefu,Yang, Jianbo.

[16]Marker-assisted breeding of Chinese elite rice cultivar 9311 for disease resistance to rice blast and bacterial blight and tolerance to submergence. Luo, Yanchang,Ong, Kar Hui,Yin, Zhongchao,Luo, Yanchang,Ma, Tingchen,Luo, Zhixiang,Li, Zefu,Yang, Jianbo,Zhang, Aifang,Yin, Zhongchao.

[17]Improvement of bacterial blight and brown planthopper resistance in an elite restorer line Huazhan of Oryza. Yi, Zili,Xiao, Youlun,Li, Jinjiang,Yu, Jianghui,Meng, Qiucheng,Deng, Xiangyang,Xiao, Guoying,Xiao, Youlun.

[18]APPLICATION OF MOLECULAR MARKERS FOR MARKER-ASSISTED SELECTION ON WHEAT FUSARIUM HEAD BLIGHT RESISTANCE. Lu, Wei-zhong,Ma, Hong-xiang,Zhang, Xu,Zhou, Miao-ping,Ren, Li-juan,Yu, Gui-hong.

[19]AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Xu, Jing,Tian, Yong-Sheng,Peng, Ri-He,Xiong, Ai-Sheng,Zhu, Bo,Jin, Xiao-Fen,Gao, Feng,Fu, Xiao-Yan,Yao, Quan-Hong,Xu, Jing,Hou, Xi-Lin. 2010

[20]Isolation, expression analysis and chromosomal location of P5CR gene in common wheat (Triticum aestivum L.). Ma, L.,Gao, L.,Mao, X.,Zhou, R.,Jia, J.,Zhou, E.. 2008

作者其他论文 更多>>