iTRAQ-based quantitative proteomic analysis of Macrobrachium rosenbergii hemocytes during Spiroplasma eriocheiris infection

文献类型: 外文期刊

第一作者: Hou, Libo

作者: Hou, Libo;Xiu, Yunji;Wang, Jian;Liu, Yuhan;Gu, Wei;Wang, Wen;Meng, Qingguo;Xiu, Yunji;Liu, Xiaoqian;Hou, Libo;Xiu, Yunji;Wang, Jian;Liu, Yuhan;Gu, Wei;Wang, Wen;Meng, Qingguo

作者机构:

关键词: Spiroplasma eriocheiris;Macrobrachium rosenbergii;Hemocytes;iTRAQ;Proteomics

期刊名称:JOURNAL OF PROTEOMICS ( 影响因子:4.044; 五年影响因子:4.02 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Spiroplasma eriocheiris, as a novel aquaculture pathogen, has led into catastrophic economic losses in aquaculture. The Macrobrachium rosenbergii hemocytes were major target cells in S. eriocheiris infection. Our study was designed to examine the hemocytes' immune response at the protein levels. The differential proteomes of the prawn hemocytes were analyzed immediately prior to injection with the pathogen, and at 192 h post-injection by isobaric tags for relative and absolute quantization (iTRAQ) labeling, followed by liquid chromatogramphytandem mass spectrometry (LC MS/MS). A total of 69 differentially expressed proteins were identified. Forty-nine proteins were up-regulated and 20 proteins were down-regulated resulting from a S. eriocheiris infection. Up-regulated proteins included vertebrate gliacolin-like protein, vitellogenin, Gram-negative binding protein 1, alpha2 macroglobulin isoform 2 (a2M), etc. Down-regulated proteins, involved with beta-1,3-glucan-binding protein (BGBP), immunoglobulin like, Rab7, lipopolysaccharide and beta-1,3-glucan (LGBP), actin-related protein, etc. Selected bioactive factors (tachylectin, alpha 2M and vitellogenin, BGBP, C-type lectin, LGBP and Rab7) were verified by their immune roles in the S. eriocheiris infection using real-time PCR. The present work could serve as a basis for future studies on the proteins implicated in the susceptibility/resistance of M. rosenbergii to S. eriocheiris, as well as contribute to our understanding of disease processes in prawns.

分类号: Q51

  • 相关文献

[1]iTRAQ-based proteomic study of the effects of Spiroplasma eriocheiris on Chinese mitten crab Eriocheir sinensis hemocytes. Meng, Qingguo,Hou, Libo,Zhao, Yang,Huang, Xin,Gu, Wei,Wang, Wen,Meng, Qingguo,Hou, Libo,Zhao, Yang,Huang, Xin,Gu, Wei,Wang, Wen,Huang, Yanqing,Xia, Siyao.

[2]Identification and function analysis of ras-related nuclear protein from Macrobrachium rosenbergii involved in Spiroplasma eriocheiris infection. Ning, Mingxiao,Xiu, Yunji,Yuan, Meijun,Bi, Jingxiu,Liu, Min,Wei, Panpan,Yan, Yuye,Gu, Wei,Wang, Wen,Meng, Qingguo,Xiu, Yunji,Gu, Wei,Meng, Qingguo. 2017

[3]COMPARATIVE PROTEOMIC ANALYSIS OF Bombyx mori HEMOCYTES TREATED WITH DESTRUXIN A. Fan, Jiqiao,Han, Pengfei,Chen, Xiurun,Hu, Qionbo,Ye, Mingqiang.

[4]iTRAQ-proteomics and bioinformatics analyses of mammary tissue from cows with clinical mastitis due to natural infection with Staphylococci aureus. Huang, Jinming,Luo, Guojing,Zhang, Zijing,Wang, Xiuge,Ju, Zhihua,Qi, Chao,Zhang, Yan,Wang, Changfa,Li, Rongling,Li, Jianbin,Yin, Weijun,Zhong, Jifeng,Luo, Guojing,Zhang, Zijing,Xu, Yinxue,Moisa, Sonia J.,Loor, Juan J.,Loor, Juan J.,Moisa, Sonia J.,Loor, Juan J.. 2014

[5]iTRAQ Protein Profile Differential Analysis between Somatic Globular and Cotyledonary Embryos Reveals Stress, Hormone, and Respiration Involved in Increasing Plant let Regeneration of Gossypium hirsutum L.. Xiaoyang Ge,Chaojun Zhang,Qianhua Wang,Zuoren Yang,Ye Wang,Xueyan Zhang,Zhixia Wu,Yuxia Hou,Jiahe Wu,Fuguang Li.

[6]Unraveling the Root Proteome Changes and Its Relationship to Molecular Mechanism Underlying Salt Stress Response in Radish (Raphanus sativus L.). Sun, Xiaochuan,Wang, Yan,Xu, Liang,Li, Chao,Zhang, Wei,Luo, Xiaobo,Jiang, Haiyan,Liu, Liwang,Sun, Xiaochuan,Sun, Xiaochuan,Wang, Yan,Xu, Liang,Luo, Xiaobo,Liu, Liwang. 2017

[7]Identification of cold-stress responsive proteins in Anabasis aphylla seedlings via the iTRAQ proteomics technique. Wang, Tingting,Wang, Mei,Chu, Guangming,Ye, Chunxiu,Ye, Chunxiu. 2017

[8]iTRAQ-based proteomic profiling of granulosa cells from lamb and ewe after superstimulation. Lin, Jiapeng,Lin, Jiapeng,Wu, Yangsheng,Han, Bing,Chen, Ying,Wang, Liqin,Li, Xiaolin,Liu, Mingjun,Huang, Juncheng. 2017

[9]iTRAQ-based quantitative proteomic analysis of wheat roots in response to salt stress. Jiang, Qiyan,Niu, Fengjuan,Sun, Xianjun,Hu, Zheng,Zhang, Hui,Li, Xiaojuan.

[10]iTRAQ Protein Profiling of Adventitious Root Formation in Mulberry Hardwood Cuttings. Tang, Zhuang,Du, Wei,Du, XiaoLong,Ban, YueYuan,Cheng, JiaLing,Du, Wei,Cheng, JiaLing.

[11]Proteomic Analysis Reveals Resistance Mechanism Against Chlorpyrifos in Frankliniella occidentalis (Thysanoptera: Thripidae). Yan, Dan-Kan,Hu, Min,Tang, Yun-Xia,Fan, Jia-Qin,Yan, Dan-Kan,Hu, Min,Tang, Yun-Xia,Fan, Jia-Qin,Yan, Dan-Kan.

[12]Proteomic analysis of differentially expressed proteins in the three developmental stages of Trichinella spiralis. Liu, J. Y.,Zhang, N. Z.,Li, W. H.,Li, L.,Yan, H. B.,Qu, Z. G.,Li, T. T.,Cui, J. M.,Yang, Y.,Jia, W. Z.,Fu, B. Q.,Jia, W. Z.,Fu, B. Q..

[13]Global iTRAQ-based proteomic profiling of Toxoplasma gondii oocysts during sporulation. Zhou, Chun-Xue,Suo, Xun,Zhou, Chun-Xue,Suo, Xun,Zhou, Chun-Xue,Zhu, Xing-Quan,He, Shuai,Zhou, Dong-Hui,Elsheikha, Hany M.,He, Shuai,Li, Qian.

[14]Analyses of the Molecular Mechanisms Associated with Silk Production in Silkworm by iTRAQ-Based Proteomics and RNA-Sequencing-Based Transcriptomics. Wang, Shaohua,You, Zhengying,Che, Jiaqian,Zhang, Yuyu,Qian, Qiujie,Zhong, Boxiong,Feng, Mao,Komatsu, Setsuko.

[15]Comparative proteomic analysis of virulent and avirulent strains of Toxoplasma gondii reveals strain-specific patterns. Zhou, Dong-Hui,Wang, Ze-Xiang,Zhou, Chun-Xue,He, Shuai,Zhu, Xing-Quan,Elsheikha, Hany M.,Zhou, Chun-Xue,He, Shuai. 2017

[16]Identification of early salt stress responsive proteins in seedling roots of upland cotton (Gossypium hirsutum L.) employing iTRAQ-based proteomic technique. Li, Wu,Li, Wu,Zhao, Fu'an,Fang, Weiping,Xie, Deyi,Hou, Jianan,Yang, Xiaojie,Zhao, Yuanming,Tang, Zhongjie,Nie, Lihong,Lv, Shuping. 2015

[17]Proteomic Differences between Developmental Stages of Toxoplasma gondii Revealed by iTRAQ-Based Quantitative Proteomics. Wang, Ze-Xiang,Zhou, Chun-Xue,He, Shuai,Zhou, Dong-Hui,Zhu, Xing-Quan,Zhou, Chun-Xue,Zhou, Chun-Xue,Elsheikha, Hany M.,He, Shuai,Zhu, Xing-Quan. 2017

[18]Comparative Proteomic Analysis Provides insight into the Key Proteins as Possible Targets Involved in Aspirin Inhibiting Biofilm Formation of Staphylococcus xylosus. Xu, Chang-Geng,Yang, Yan-Bei,Zhou, Yong-Hui,Hao, Mei-Qi,Ren, Yong-Zhi,Wang, Xiao-Ting,Chen, Jian-Qing,Muhammad, Ishfaq,Wang, Shuai,Li, Yan-Hua,Liu, Di,Li, Xiu-Bo,Li, Yan-Hua. 2017

[19]Comparative proteomic analysis of latex from Hevea brasiliensis treated with Ethrel and methyl jasmonate using iTRAQ-coupled two-dimensional LC-MS/MS. Zeng, Rizhong.

[20]Identification of lysophospholipase protein from Spiroplasma eriocheiris and verification of its function. Zhu, Huanxi,Liu, Peng,Du, Jie,Wang, Jian,Jing, Yunting,Zhang, Jia,Gu, Wei,Wang, Wen,Meng, Qingguo,Zhu, Huanxi,Liu, Peng,Du, Jie,Wang, Jian,Jing, Yunting,Zhang, Jia,Gu, Wei,Wang, Wen,Meng, Qingguo,Zhu, Huanxi,Gu, Wei,Meng, Qingguo.

作者其他论文 更多>>