Review on the identification and role of Toxoplasma gondii antigenic epitopes

文献类型: 外文期刊

第一作者: Wang, Yanhua

作者: Wang, Yanhua;Wang, Guangxiang;Cai, Jianping;Yin, Hong

作者机构:

关键词: Toxoplasma gondii;Epitopes;Identification and role;Epitope-based vaccines;Epitope-based diagnostic reagents

期刊名称:PARASITOLOGY RESEARCH ( 影响因子:2.289; 五年影响因子:2.403 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Toxoplasma gondii is an obligate intracellular protozoan parasite with a broad range of hosts, and it causes severe toxoplasmasis in both humans and animals. It is well known that the progression and severity of a disease depend on the immunological status of the host. Immunological studies on antigens indicate that antigens do not exert their functions through the entire protein molecule, but instead, specific epitopes are responsible for the immune response. Protein antigens not only contain epitope structures used by B, T, cytotoxic T lymphocyte (CTL), and NK cells to mediate immunological responses but can also contain structures that are unfavorable for protective immunity. Therefore, the study of antigenic epitopes from T. gondii has not only enhanced our understanding of the structure and function of antigens, the reactions between antigens and antibodies, and many other aspects of immunology but it also plays a significant role in the development of new diagnostic reagents and vaccines. In this review, we summarized the immune mechanisms induced by antigen epitopes and the latest advances in identifying T. gondii antigen epitopes. Particular attention was paid to the potential clinical usefulness of epitopes in this context. Through a critical analysis of the current state of knowledge, we elucidated the latest data concerning the biological effects of epitopes and the immune results aimed at the development of future epitope-based applications, such as vaccines and diagnostic reagents.

分类号: R53

  • 相关文献

[1]Analysis of murine B-cell epitopes on bluetongue virus 12 nonstructural protein 1. Wang HaiXiu,Sun EnCheng,Xu QingYuan,Yang Tao,Zhang Qin,Feng YuFei,Li JunPing,Lv Shuang,Sun Liang,Sun Jing,Wu DongLai.

[2]Characterization of monoclonal antibodies that recognize the amino- and carboxy-terminal epitopes of the pseudorabies virus UL42 protein. Du, Wenjuan,Wang, Yiping,Huang, Liping,Wei, Yanwu,Chen, Dongjie,Sun, Jianhui,Wu, Hongli,Feng, Li,Liu, Changming.

[3]In silico prediction and in vitro identification of bluetongue virus 4 VP5 protein B-cell epitopes. Sun, L.,Sun, E. C.,Yang, T.,Xu, Q. Y.,Feng, Y. F.,Li, J. P.,Sun, J.,Wang, W. S.,Wei, P.,Wu, D. L.,Sun, L.,Sun, E. C.,Yang, T.,Xu, Q. Y.,Feng, Y. F.,Li, J. P.,Sun, J.,Wang, W. S.,Wei, P..

[4]Identification of epitopes on nonstructural protein 7 of porcine reproductive and respiratory syndrome virus recognized by monoclonal antibodies using phage-display technology. Wang, Heng,Sun, Lingshuang,Ning, Zhangyong,Zhang, Guihong,Wang, Heng,Sun, Lingshuang,Ning, Zhangyong,Ji, Fangxiao,Cui, Jin,Zhang, Guihong,Liu, Rongchang,Zhang, Weidong.

[5]Identification of two novel BTV16-specific B cell epitopes using monoclonal antibodies against the VP2 protein. Wang, Wen-Shi,Sun, En-Cheng,Xu, Qing-Yuan,Yang, Tao,Qin, Yong-Li,Zhao, Jing,Feng, Yu-Fei,Li, Jun-Ping,Wei, Peng,Zhang, Cui-Yun,Wu, Dong-lai.

[6]Influence of Gamma Irradiation and Heat Treatment on the Immunogenicity of Five Epitopes of Pen a1. Mou, Hui,Gao, Mei-xu,Zhao, Jie,Zhao, Xin,Wang, Zhi-dong,Pan, Jia-rong.

[7]Nanoparticle orientationally displayed antigen epitopes improve neutralizing antibody level in a model of porcine circovirus type 2. Ding, Peiyang,Li, Yafei,Zhou, Enmin,Zhang, Gaiping,Ding, Peiyang,Zhang, Teng,Li, Yafei,Teng, Man,Sun, Yaning,Liu, Xiao,Chai, Shujun,Jin, Qianyue,Zhang, Gaiping,Zhang, Teng,Liu, Xiao,Zhang, Gaiping,Jin, Qianyue,Zhang, Gaiping. 2017

[8]Identification of three novel linear B-cell epitopes on the VP5 protein of BTV16. Wang, Wen-Shi,Sun, En-cheng,Liu, Ni-Hong,Yang, Tao,Xu, Qing-Yuan,Qin, Yong-Li,Zhao, Jing,Feng, Yu-Fei,Li, Jun-Ping,Wei, Peng,Zhang, Cui-Yun,Wu, Dong-lai. 2013

[9]Prediction and identification of novel IBV S1 protein derived CTL epitopes in chicken. Tan, Lei,Liao, Ying,Fan, Jin,Zhang, Yuqiang,Mao, Xiang,Sun, Yingjie,Song, Cuiping,Qiu, Xusheng,Meng, Chunchun,Ding, Chan,Ding, Chan.

[10]Screening and identification of B cell epitopes of structural proteins of foot-and-mouth disease virus serotype Asia1. Zhang, Zhong-Wang,Zhang, Yong-Guang,Wang, Yong-Lu,Pan, Li,Fang, Yu-Zhen,Jiang, Shou-Tian,Lue, Jian-Liang,Zhou, Peng.

[11]Identification of a virus-specific and conserved B-cell epitope on NS1 protein of Japanese encephalitis virus. Tong, Guang-Zhi,Bin Wang,Hua, Rong-Hong,Tian, Zhi-Jun,Chen, Na-Sha,Zhao, Fu-Rong,Liu, Tian-Qiang,Wang, Yun-Feng,Tong, Guang-Zhi. 2009

[12]Ultrastructural changes and the distribution of arabinogalactan proteins during somatic embryogenesis of banana (Musa spp. AAA cv. 'Yueyoukang 1'). Yang, Xiao,Zou, Ru,Chen, Houbin,Xu, Chunxiang,Lin, Guimei,Samaj, Jozef.

[13]Protective efficacy of Toxoplasma gondii calcium-dependent protein kinase 1 (TgCDPK1) adjuvated with recombinant IL-15 and IL-21 against experimental toxoplasmosis in mice. Chen, Jia,Li, Zhong-Yuan,Huang, Si-Yang,Song, Hui-Qun,Zhou, Dong-Hui,Zhu, Xing-Quan,Chen, Jia,Zhu, Xing-Quan,Petersen, Eskild,Petersen, Eskild. 2014

[14]Serum Metabolic Profiling of Oocyst-Induced Toxoplasma gondii Acute and Chronic Infections in Mice Using Mass-Spectrometry. Zhou, Chun-Xue,Chen, Xiao-Qing,Zhu, Xing-Quan,Zhou, Chun-Xue,He, Shen-Yi,Cong, Wei,Chen, Xiao-Qing,Elsheikha, Hany M.. 2018

[15]Protective efficacy of two novel DNA vaccines expressing Toxoplasma gondii rhomboid 4 and rhomboid 5 proteins against acute and chronic toxoplasmosis in mice. Zhang, Nian-Zhang,Xu, Ying,Wang, Meng,Chen, Jia,Huang, Si-Yang,Zhu, Xing-Quan,Xu, Ying,Petersen, Eskild,Huang, Si-Yang,Zhu, Xing-Quan. 2015

[16]Twenty-six circulating antigens and two novel diagnostic candidate molecules identified in the serum of canines with experimental acute toxoplasmosis. Xue, Junxin,Xiao, Yan,Huang, Kehe,Xue, Junxin,Jiang, Wei,Chen, Yongjun,Liu, Yingchun,Zhang, Huajing,Wang, Quan,Qiao, Yuanbiao. 2016

[17]Sequence variation in the Toxoplasma gondii ROP20 gene among strains from different hosts and geographical locations. Ning, H. R.,Zhu, X. Q.,Ning, H. R.,Wang, J. L.,Qin, S. Y.,Huang, S. Y.,Lou, Z. L.,Hu, L. Y.,Zhu, X. Q.,Qin, S. Y.,Lou, Z. L.,Huang, S. Y.,Zhu, X. Q.. 2015

[18]Characterization of mouse brain microRNAs after infection with cyst-forming Toxoplasma gondii. Xu, Min-Jun,Zhou, Dong-Hui,Huang, Si-Yang,Fan, Yi-Fan,Zhu, Xing-Quan,Nisbet, Alasdair J.,Zhu, Xing-Quan,Fan, Yi-Fan. 2013

[19]Seroprevalence and genetic characterization of Toxoplasma gondii in masked palm civet (Paguma larvata) in Hainan province, tropical China. Hou, Guan-Yu,Zhou, Han-Lin,Rong, Guang,Zhao, Jun-Ming. 2016

[20]Sequence variation in Toxoplasma gondii MIC13 gene among isolates from different hosts and geographical locations. Ren, Di,Zhou, Yang,Lin, Ze-Ping,Lin, Rui-Qing,Wu, Song-Ming,Lin, Shao-Qi,Yuan, Zi-Guo,Ren, Di,Zhou, Dong-Hui,Xu, Min-Jun,Zhou, Yang,Wu, Song-Ming,Yuan, Zi-Guo,Yang, Jian-Fa,Zou, Feng-Cai. 2012

作者其他论文 更多>>