Genetic analysis of leaf morphology underlying the plant density response by QTL mapping in maize (Zea mays L.)
文献类型: 外文期刊
第一作者: Ku, Lixia
作者: Ku, Lixia;Ren, Zhenzhen;Shi, Yong;Su, Huihui;Wang, Zhiyong;Li, Guohui;Wang, Xiaobo;Zhu, Yuguang;Zhou, Jinlong;Chen, Yanhui;Ku, Lixia;Ren, Zhenzhen;Shi, Yong;Su, Huihui;Wang, Zhiyong;Li, Guohui;Wang, Xiaobo;Zhu, Yuguang;Zhou, Jinlong;Chen, Yanhui;Chen, Xiao;Qi, Jianshuang;Zhang, Xin
作者机构:
关键词: Maize;RIL populations;Leaf morphology;QTL mapping
期刊名称:MOLECULAR BREEDING ( 影响因子:2.589; 五年影响因子:2.75 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: Maize yield increase has been strongly linked to plant population densities over time with changes in plant architecture, but the genetic basis for the plant architecture response to plant density is unknown, as is its stability across environments. To elucidate the genetic basis of the plant architecture response to density in maize, we mapped quantitative trait loci (QTLs) for leaf morphology-related traits in four sets of recombinant inbred line (RIL) populations under two plant density conditions. Forty-five QTLs for six traits were detected in both high and low plant density conditions. Thirty-seven QTLs were only detected when grown under high plant density, and 34 QTLs were only detected when grown under low plant density. Twenty-two meta-QTLs (mQTLs) were identified by meta-analysis, and mQTL1-1, mQTL3-2 and mQTL8 were identified when grown under high and low plant densities, with R-2 of some initial QTLs > 10 %, suggesting the mQTLs might be hot spots of the important QTLs for the related traits under planting density stress conditions. The results presented here provide useful information for further research and the marker-assisted selection of varieties targeting increased plant density and will help to reveal the molecular mechanisms related to leaf morphology in response to density.
分类号: Q94
- 相关文献
作者其他论文 更多>>
-
A novel antifungal peptide, SP1.2, from Rhodopseudomonas palustris against the rice blast pathogen
作者:Wu, Xiyang;Qin, Yingfei;Tan, Xinqiu;Liu, Yong;Chen, Yue;Zhang, Deyong;Wu, Xiyang;Qin, Yingfei;Li, Chenggang;Zhang, Xin;Tan, Xinqiu;Liu, Yong;Chen, Yue;Zhang, Deyong;Wu, Xiyang;Qin, Yingfei;Li, Chenggang;Zhang, Xin;Tan, Xinqiu;Liu, Yong;Chen, Yue;Zhang, Deyong
关键词:SP1.2 peptide; antifungal activity; ROS burst; Magnaporthe oryzae; rice defense
-
The new CFEM protein CgCsa required for Fe 3+homeostasis regulates the growth, development, and pathogenicity of Colletotrichum gloeosporioides
作者:Liu, Sizhen;Bu, Zhigang;Zhu, Yonghua;Liu, Sizhen;Zhang, Xin;Chen, Yue;Sun, Qianlong;Wu, Fei;Guo, Sheng;Tan, Xinqiu;Liu, Sizhen;Zhang, Xin;Chen, Yue;Sun, Qianlong;Wu, Fei;Guo, Sheng;Tan, Xinqiu;Tan, Xinqiu
关键词:Colletotrichum gloeosporioides; CgCsa; CFEM; Pathogenicity; Iron
-
Nitrification inhibitor 3,4-dimethylpyrazole phosphate alleviates the dissolution of soil inorganic carbon caused by nitrogen fertilization
作者:Zhao, Yi;Zhao, Yi;Meng, Fanqiao;Zhao, Yi;Bol, Roland;Xiao, Guangmin;Zhang, Xin;Tan, Yuechen;Bol, Roland
关键词:Soil inorganic carbon; Pedogenic carbonates; DMPP; Soil carbon stocks; delta C-13
-
Comprehensive Analysis of the DnaJ/HSP40 Gene Family in Maize (Zea mays L.) Reveals that ZmDnaJ96 Enhances Abiotic Stress Tolerance
作者:Cao, Liru;Wang, Guorui;Pang, Yunyun;Zhang, Qianjin;Zhang, Xin;Wang, Zhenghua;Lu, Xiaomin;Cao, Liru;Lu, Xiaomin;Fahim, Abbas Muhammad
关键词:DnaJ; HSP40; Gene resources; Evolution; Drought; Heat stress
-
Recent Progress Regarding Jasmonates in Tea Plants: Biosynthesis, Signaling, and Function in Stress Responses
作者:Zhang, Xin;Yu, Yongchen;Zhang, Jin;Qian, Xiaona;Li, Xiwang;Sun, Xiaoling;Zhang, Xin;Yu, Yongchen;Zhang, Jin;Qian, Xiaona;Li, Xiwang;Sun, Xiaoling
关键词:jasmonates; biosynthesis; tea plant; defense response; biotic stress; abiotic stress
-
Butylated hydroxyanisole controls anthracnose on postharvest citrus fruit by inducing autophagosome formation in Colletotrichum gloeosporioides
作者:Wang, Yuqing;Ji, Sirong;Chen, Xiao;Liu, Shuqi;Zhao, Juan;Long, Chao-an;Long, Chao-an;Long, Chao-an
关键词:Citrus; Anthracnose; Butylated hydroxyanisole; Autophagy; ROS; Membrane integrity
-
Recent Advances Regarding Polyphenol Oxidase in Camellia sinensis: Extraction, Purification, Characterization, and Application
作者:Zou, Chun;Zhang, Xin;Xu, Yongquan;Yin, Junfeng
关键词:polyphenol oxidase; Camellia sinensis; extraction; purification; characterization; application