Genome-wide identification, classification, and analysis of NADP-ME family members from 12 crucifer species

文献类型: 外文期刊

第一作者: Tao, Peng

作者: Tao, Peng;Li, Biyuan;Wang, Wuhong;Yue, Zhichen;Lei, Juanli;Zhao, Yanting;Zhong, Xinmin;Guo, Weiling

作者机构:

关键词: NADP-ME;Promoter;Gene structure;Gene expression;Brassicaceae

期刊名称:MOLECULAR GENETICS AND GENOMICS ( 影响因子:3.291; 五年影响因子:3.257 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: NADP-dependent malic enzymes (NADP-MEs) play essential roles in both normal development and stress responses in plants. Here, genome-wide analysis was performed to identify 65 putative NADP-ME genes from 12 crucifer species. These NADP-ME genes were grouped into five categories of syntenic orthologous genes and were divided into three clades of a phylogenic tree. Promoter motif analysis showed that NADP-ME1 genes in Group IV were more conserved with each other than the other NADP-ME genes in Groups I and II. A nucleotide motif involved in ABA responses, desiccation and seed development was found in the promoters of most NADP-ME1 genes. Generally, the NADP-ME genes of Brassica rapa, B. oleracea and B. napus had less introns than their corresponding Arabidopsis orthologs. In these three Brassica species, the NADP-ME genes derived from the least fractionated subgenome have lost less introns than those from the medium fractionated and most fractionated subgenomes. BrNADP-ME1 showed the highest expression in petals and mature embryos. Two paralogous NADP-ME2 genes (BrNADP-ME2a and BrNADP-ME2b) shared similar expression profiles and differential expression levels. BrNADP-ME3 showed down-regulation during embryogenesis and reached its lowest expression in early cotyledonary embryos. BrNADP-ME4 was expressed widely in multiple organs and showed high expression during the whole embryogenesis process. Different NADP-ME genes of B. rapa showed differential gene expression profiles in young leaves after ABA treatment or cold stress. Our genome-wide identification and characterization of NADP-ME genes extend our understanding of the evolution or function of this family in Brassicaceae.

分类号: Q7

  • 相关文献

[1]Cloning, structure, and expression pattern of the P-450 aromatase gene in rice field eel (Monopterus albus). Yu, Ju-Hua,Tang, Yong-Kai,Li, Jian-Lin. 2008

[2]The wheat omega-gliadin genes: structure and EST analysis. Anderson, Olin D.,Gu, Yong Q.,Lazo, Gerard R.,Wu, Jiajie,Kong, Xiuying,Wu, Jiajie,Wu, Jiajie. 2009

[3]Molecular cloning and expression profile of an ATP-binding cassette (ABC) transporter gene from the hemipteran insect Nilaparvata lugens. Zha, W. J.,Li, S. H.,Zhou, L.,Chen, Z. J.,Liu, K.,Yang, G. C.,Hu, G.,You, A. Q.,He, G. C.. 2015

[4]Genome-wide identification and characterization of aquaporin genes (AQPs) in Chinese cabbage (Brassica rapa ssp pekinensis). Tao, Peng,Zhong, Xinmin,Li, Biyuan,Wang, Wuhong,Yue, Zhichen,Lei, Juanli,Huang, Xiaoyun,Guo, Weiling,Huang, Xiaoyun.

[5]Genome-wide identification of the expansin gene family in tobacco (Nicotiana tabacum). Ding, Anming,Marowa, Prince,Kong, Yingzhen.

[6]Variants and Gene Expression of the TLR2 Gene and Susceptibility to Mastitis in Cattle. Huang, Jinming,Liu, Li,Wang, Hongmei,Zhang, Cuixia,Ju, Zhihua,Wang, Changfa,Zhong, Jifeng.

[7]The SOD Gene Family in Tomato: Identification, Phylogenetic Relationships, and Expression Patterns. Feng, Kun,Zheng, Qingsong,Feng, Kun,Yu, Jiahong,Cheng, Yuan,Ruan, Meiying,Wang, Rongqing,Ye, Qingjing,Zhou, Guozhi,Li, Zhimiao,Yao, Zhuping,Yang, Yuejian,Wan, Hongjian,Yu, Jiahong. 2016

[8]Isolation, Characterization and Promoter Analysis of Cell Wall Invertase Gene SoCIN1 from Sugarcane (Saccharum spp.). Wang, Ai-Qin,Huang, Jing-Li,Yang, Li-Tao,Yang, Li-Tao,Li, Yang-Rui,Yang, Li-Tao,Li, Yang-Rui. 2015

[9]Characterization of the TaAIDFa gene encoding a CRT/DRE-binding factor responsive to drought, high-salt, and cold stress in wheat. Ma, You-Zhi,Xu, Zhao-Shi,Ni, Zhi-Yong,Liu, Li,Nie, Li-Na,Li, Lian-Cheng,Chen, Ming,Ma, You-Zhi. 2008

[10]Widespread and evolutionary analysis of a MITE family Monkey King in Brassicaceae. Dai, Shutao,Hou, Jinna,Long, Yan,Wang, Jing,Li, Cong,Xiao, Qinqin,Jiang, Xiaoxue,Zou, Xiaoxiao,Zou, Jun,Meng, Jinling,Hou, Jinna. 2015

[11]The complete chloroplast genome of Arabidopsis lyrata. Wu, Zhiqiang,Gu, Cuihua,Tembrock, Luke R.,Sun, Cheng. 2016

[12]Estimating Plasmodiophora brassicae gene expression in lines of B. rapa by RT-PCR. Wu, Li-yan,Li, Shi-kai,Gong, Ya-ju,Zhong, Li,He, Jiang-Ming,Siemens, Johannes,Ludwig-Mueller, Jutta. 2012

[13]Detection of Contarinia nasturtii (Diptera : Cecidomyiidae) in New York, a new pest of cruciferous plants in the United States. Kikkert, Julie R.,Hoepting, Christine A.,Wu, Qingjun,Wang, Ping,Baur, Robert,Shelton, Anthony M..

[14]Nematode resistance of rape-radish chromosome addition lines. Peterka, Herbert,Budahn, Holger,Zhang, Shao Song,Li, Jin Bin. 2010

[15]Lineage-specific evolution of Methylthioalkylmalate synthases (MAMs) involved in glucosinolates biosynthesis. Zhang, Jifang,Wang, Xiaobo,Cheng, Feng,Wu, Jian,Liang, Jianli,Wang, Xiaowu,Zhang, Jifang,Yang, Wencai. 2015

[16]A 36-bp deletion in the alpha subunit of glutamate-gated chloride channel contributes to abamectin resistance in Plutella xylostella. Liu, Feng,Shi, Xiuzhen,Wu, Qingjun,Xu, Baoyun,Xie, Wen,Wang, Shaoli,Zhang, Youjun,Liang, Yanpo,Liu, Feng,Liu, Nannan.

[17]Syntenic gene analysis between Brassica rapa and other Brassicaceae species. Cheng, Feng,Wu, Jian,Fang, Lu,Wang, Xiaowu. 2012

[18]Glucosinolates in Chinese Brassica campestris vegetables: Chinese cabbage, purple cai-tai, choysum, pakehoi, and turnip. Chen, Xinjuan,Zhu, Zhujun,Zhu, Zhujun,Chen, Xinjuan,Gerendas, Joska,Zimmermann, Nadine. 2008

[19]HETEROLOGOUS EXPRESSION OF AN ALLIGATORWEED HIGH-AFFINITY POTASSIUM TRANSPORTER GENE ENHANCES SALINITY TOLERANCE IN ARABIDOPSIS THALIANA. Song, Zhizhong,Yang, Shunying,Jin, Man,Su, Yanhua,Song, Zhizhong,Yang, Shunying,Jin, Man,Zhu, Hong,Zhu, Hong. 2014

[20]Temperature-Dependent Survival of Turnip Crinkle Virus-Infected Arabidopsis Plants Relies on an RNA Silencing-Based Defense That Requires DCL2, AG02, and HEN1. Zhang, Xiuchun,Zhang, Xiaofeng,Singh, Jasleen,Qu, Feng,Zhang, Xiuchun,Zhang, Xiaofeng,Li, Dawei.

作者其他论文 更多>>