Targeted delivery of 5-fluorouracil to HT-29 cells using high efficient folic acid-conjugated nanoparticles

文献类型: 外文期刊

第一作者: Wang, Yichao

作者: Wang, Yichao;Li, Puwang;Chen, Lijue;Gao, Weimin;Kong, Ling Xue;Li, Puwang;Zeng, Fanbo

作者机构:

关键词: HT-29;nanoparticles;PLGA-1;3-diaminopropane-folic acid;targeting

期刊名称:DRUG DELIVERY ( 影响因子:6.419; 五年影响因子:6.169 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The incorporation of a high percentage of targeting molecules into drug delivery system is one of the important methods for improving efficacy of targeting therapeutic drugs to cancer cells. PLGA-based drug delivery carriers with folic acid (FA) as targeting molecule have a low targeting efficiency due to a low FA conjugation ratio. In this work, we fabricated a FA-conjugated PLGA system using a crosslinker 1, 3-diaminopropane and have achieved a high conjugation ratio of 46.7% (mol/mol). The as-prepared PLGA-based biomaterial was used to encapsulate therapeutic drug 5-fluorouracil (5-FU) into nanoparticles. In the in vitro experiments, an IC50 of 5.69 mg/mL has been achieved for 5-FU loaded PLGA-1, 3-diaminopropane-folic acid nanoparticles on HT-29 cancer cells and is significantly lower than that of 5-FU and 5-FU loaded PLGA nanoparticles which only have an IC50 of 22.9 and 14.17 mg/mL, respectively. The fluorescent microscopy images showed that nanoparticles with FA are largely taken up by HT-29 cancer cells and the targeting nanoparticles have more affinity to cancer cells than the pure drugs and untreated nanoparticles. Therefore, the 1, 3-diaminopropane can facilitate the conjugation of FA to PLGA to form a novel polymer and 5-FU loaded PLGA-1, 3-diaminopropane-folic acid nanoparticles can be a highly efficient system for specific delivery of drugs to cancer cells.

分类号: R9

  • 相关文献

[1]Effect of glycosylation patterns of Chinese eggplant anthocyanins and other derivatives on antioxidant effectiveness in human colon cell lines. Jing, Pu,Qian, Bingjun,Zhao, Shujuan,Ye, Ludan,Wang, Xingya,Qi, Xin,Giusti, M. Monica.

[2]Creation of gene-specific rice mutants by AvrXa23-based TALENs. Wang Fu-jun,Wang Chun-lian,Zheng Chong-ke,Qin Teng-fei,Gao Ying,Zhao Kai-jun,Wang Fu-jun,Liu Pi-qing. 2017

[3]Involvement of a Putative Bipartite Transit Peptide in Targeting Rice Pheophorbide a Oxygenase into Chloroplasts for Chlorophyll Degradation during Leaf Senescence. Xie, Qingjun,Liang, Yan,Zhang, Jian,Zheng, Huakun,Zuo, Jianru,Xie, Qingjun,Liang, Yan,Zhang, Jian,Zheng, Huakun,Zuo, Jianru,Xie, Qingjun,Zheng, Huakun,Xie, Qingjun,Dong, Guojun,Qian, Qian,Liang, Yan. 2016

[4]Galactosylated poly(ethylene glycol) methacrylate-st-3-guanidinopropyl methacrylamide copolymers as siRNA carriers for inhibiting Survivin expression in vitro and in vivo. Wu, Yang,Qin, Zhu,Ji, Jinkai,Yang, Ran,Li, Xingsong,Qin, Zhu,Zhang, Xiaoqiang,Li, Yuanhui,Yin, Lihong,Pu, Yuepu.

[5]Preparation and characterization of alpha-galactosidase-loaded chitosan nanoparticles for use in foods. Liu, Yong,Li, Yanli,Xu, Shaochun,Tang, Jiangwu,Xu, Yaoxing,Sun, Yan,Ding, Juntao. 2011

[6]Characteration of Protein Loaded Chitosan Nanoparticles at Different pH Values. Liu, Yong,Li, Yanli,Xu, Shaochun,Xu, Yaoxing,Sun, Yan. 2011

[7]Development of Ligand Incorporated Chitosan Nanoparticles for the Selective Delivery of 5-Fluorouracil to Colon. Li, Puwang,She, F. H.,Kong, L. X.,Li, Puwang,Li, Puwang,Peng, Zheng. 2011

[8]Green synthesis of gold nanoparticles using Citrus maxima peel extract and their catalytic/antibacterial activities. Yuan, Chun-Gang,Huo, Can,Gui, Bing,Cao, Wei-Ping. 2017

[9]Fast and selective recognizes polysaccharide by surface molecularly imprinted film coated onto aldehyde-modified magnetic nanoparticles. Huang, Weiwei,Yang, Xin,Zhao, Song,Zhang, Min,Hu, Xinglong,Wang, Jing,Zhao, Haitian,Huang, Weiwei,Yang, Xin,Zhang, Min,Wang, Jing,Huang, Weiwei.

[10]Chitosan-Modified PLGA Nanoparticles with Versatile Surface for Improved Drug Delivery. Wang, Yichao,Li, Puwang,Kong, Lingxue,Li, Puwang. 2013

[11]Utilization of Chitosan-Lactide Copolymer Nanoparticles as Controlled Release Pesticide Carrier for Pyraclostrobin Against Colletotrichum gossypii Southw. Huang, Qi-Liang,Xu, Lei,Cao, Li-Dong,Li, Feng-Min,Wang, Xiang-Jing.

[12]Impact of Metal and Metal Oxide Nanoparticles on Plant: A Critical Review. Rastogi, Anshu,Rastogi, Anshu,Zivcak, Marek,Sytar, Oksana,Brestic, Marian,Sytar, Oksana,Kalaji, Hazem M.,Kalaji, Hazem M.,He, Xiaolan,Mbarki, Sonia. 2017

[13]Formulation Optimization For High Drug Loading Colonic Drug Delivery Carrier. Wang, Yichao,Li, Puwang,Kong, Lingxue,Peng, Zheng,Luo, Yongyue. 2010

[14]Tangeretin-loaded protein nanoparticles fabricated from zein/beta-lactoglobulin: Preparation, characterization, and functional performance. Chen, Jingjing,Zheng, Jinkai,McClements, David Julian,Xiao, Hang,Zheng, Jinkai. 2014

[15]The use of human umbilical vein endothelial cells (HUVECs) as an in vitro model to assess the toxicity of nanoparticles to endothelium: a review. Cao, Yi,Gong, Yu,Zhou, Yiwei,Fang, Xin,Zhang, Cao,Li, Yining,Li, Juan,Cao, Yi,Liu, Liangliang,Zhou, Yiwei,Fang, Xin. 2017

[16]Epigallocatechin gallate-beta-lactoglobulin nanoparticles improve the antitumor activity of EGCG for inducing cancer cell apoptosis. Wu, Min,Jin, Peng,Qin, Dingkui,Wang, Kai,Du, Qizhen,Jin, Jianchang,Xu, Yongquan,Yin, Junfeng. 2017

[17]Analysis of Small Molecule Compounds by Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry with ZnO, CuO and NiO Nanoparticles as Matrix. Yang Meng-Rui,Wang Min,Tang Xiao-Yan,Zhou Jian,Mao Xue-Fei. 2015

[18]Construction of novel amphiphilic chitosan copolymer nanoparticles for chlorpyrifos delivery. Zhang, Jiakun,Li, Min,Huang, Qiliang,Fan, Tengfei,Xu, Qing,Wu, Yan,Chen, Chunying.

[19]Interactions Analysis in BSA-loaded Chitosan Nanoparticles at Different pH Values. Liu, Yong,Li, Yanli,Xu, Shaochun,Xu, Yaoxing,Sun, Yan. 2011

[20]Enhanced Germicidal Efficacy by Co-Delivery of Validamycin and Hexaconazole with Methoxy Poly(ethylene glycol)-Poly(lactide-co-glycolide) Nanoparticles. Zhang, Jiakun,Zhao, Caiyan,Wu, Yan,Zhang, Jiakun,Liu, Yajing,Cao, Lidong,Huang, Qiliang.

作者其他论文 更多>>