Density responses and spatial distribution of cotton yield and yield components in jujube (Zizyphus jujube)/cotton (Gossypium hirsutum) agroforestry

文献类型: 外文期刊

第一作者: Qi Wang

作者: Qi Wang;Shuo Han;Lizhen Zhang;Dongsheng Zhang;Wopke van der Werf;Jochem B. Evers;Hongquan Sun;Zhicheng Su;Siping Zhang

作者机构:

关键词: Border row effect;Dry matter partitioning;Harvest index;Intercropping;Specific leaf area

期刊名称:EUROPEAN JOURNAL OF AGRONOMY ( 影响因子:5.124; 五年影响因子:5.567 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Trees are the dominant species in agroforestry systems, profoundly affecting the performance of under story crops. Proximity to trees is a key factor in crop performance, but rather little information is available on the spatial distribution of yield and yield components of crop species under the influence of trees in agroforestry systems. Also, little information is available on how crop density may be exploited to optimize the yield in such systems. Here we studied the performance of cotton in jujube/cotton agroforestry. Field experiments were conducted in 2012 and 2013 in Hetian, Xinjiang, China. Cotton was grown at a row distance of 60 cm in three densities, 13.5, 18.0 and 22.5 plants m(-2) in six m wide paths between tree lines in a jujube plantation. Plant density affected both cotton aboveground dry matter and yield significantly. The highest yield was attained at the intermediate density of 18.0 plants m-2 (20.0 plants m(-2) corresponding in sole cotton), lower than the optimal density in sole cotton (25.0 plants m(-2)). Yield at the lower density was constrained by the low number of bolls per m(2) as a direct consequence of the low density, whereas at the high plant density yield was constrained by a lower allocation of assimilates to cotton seed and lint, as a consequence of intraspecific and interspecific competitions. There were strong gradients in yield and yield components in relation to the distance from the tree rows. Leaf area and total dry matter of cotton in rows close to the tree lines were reduced, especially in the rows next to the trees. Moreover, biomass allocation to cotton fruits was reduced in these rows. Competitive influences from the trees on cotton performance extended two rows deep in a six-year old jujube stand, and even three rows deep in a seven-year old stand. Shading effects on cotton yield were compensated by increasing plant density as a result of greater boll numbers per unit ground area. Data from this study help guide the design of optimal plant density of cotton in jujube plantations and give insight in the spatial distribution and dynamics of competitive effects in agroforestry systems in general. (C) 2016 Elsevier B.V. All rights reserved.

分类号: S3

  • 相关文献

[1]Maize grain concentrations and above-ground shoot acquisition of micronutrients as affected by intercropping with turnip, faba bean, chickpea, and soybean. Xia HaiYong,Xue YanFang,Zhang FuSuo,Li Long,Zhao JianHua,Sun JianHao,Bao XingGuo,Eagling, Tristan. 2013

[2]Simulation of dry matter partitioning and flower marketing date of greenhouse phalaenopsis. Zhang, Xiaoyan,Liu, Feng,Wang, Fengyun,Yang, Yujian,Feng, Wenjie,Zhu, Jianhua. 2007

[3]Simulation of Processing Tomato Dry Matter Accumulation, Partitioning and Yield Prediction. Wang Jichuan,Yu Jun,Gao Shan,Yuan Jie,Ma Fuyu,Ma Fuyu,Chen Yuanliang,He Wei. 2010

[4]Influence of High Temperature Stress on Net Photosynthesis, Dry Matter Partitioning and Rice Grain Yield at Flowering and Grain Filling Stages. Lu Guo-hua,Wu Yong-feng,Bai Wen-bo,Ma Bao,Wang Chun-yan,Song Ji-qing. 2013

[5]Mechanisms for the relationships between water-use efficiency and carbon isotope composition and specific leaf area of maize (Zea mays L.) under water stress. Zhang, Congzhi,Zhang, Jiabao,Zhang, Hui,Zhao, Jinhua,Wu, Qicong,Zhao, Zhanhui,Cai, Taiyi,Zhang, Hui.

[6]Invasive Eupatorium catarium and Ageratum conyzoides benefit more than does a common native plant from nutrient addition in both competitive and non-competitive environments. Huang, Qiao Q.,Shen, Yi D.,Li, Xiao X.,Li, Shao L.,Fan, Zhi W..

[7]Photosynthetic characteristics in Oryza species. Zhao, M.,Ding, Z.,Lafitte, R.,Sacks, E.,Dimayuga, G.,Holt, D.. 2010

[8]Relationship Between Allelopathic Effects and Functional Traits of Different Allelopathic Potential Rice Accessions at Different Growth Stages. Xu Gaofeng,Shen Shicai,Zhang Fudou,Zhang Yun,Hisashi, Kato-Noguchi,David, Roy Clements. 2018

[9]Genetic gains in grain yield, net photosynthesis and stomatal conductance achieved in Henan Province of China between 1981 and 2008. Xia, X. C.,He, Z. H.,Zheng, T. C.,Yin, G. H.,Wang, L. N.,Han, Y. L.,Huang, F.,Tang, J. W.,Zhang, X. K.,Chen, L.,He, Z. H..

[10]Raising potential yield of short-duration rice cultivars is possible by increasing harvest index. Yin, Xiaohong,Jiang, Ligeng,Zou, Yingbin,Jiang, Ligeng,Zou, Yingbin,Deng, Guofu.

[11]Contribution of cultivar, fertilizer and weather to yield variation of winter wheat over three decades: A case study in the North China Plain. Zhang, Xiying,Sun, Hongyong,Chen, Suying,Shao, Liwei,Liu, Xiuwei,Wang, Shufen.

[12]FIELD EVALUATION ON WATER PRODUCTIVITY OF WINTER WHEAT UNDER SPRINKLER OR SURFACE IRRIGATION IN THE NORTH CHINA PLAIN. Liu, Hai-Jun,Kang, Yaohu,Yao, Su-Mei,Sun, Ze-Qiang,Liu, Shi-Ping,Wang, Qing-Gai,Sun, Ze-Qiang. 2013

[13]Aboveground Characteristics, Yield Potential and Drought Tolerance in "Konyu" Potato Cultivars with Large Root Mass. Naya, T.,Itoh, E.,Matsumoto, M.,Iwama, K.,Wangchuk, P.,Zheng, Xu,Gopal, Jai. 2010

[14]Relationship between yield, carbon isotope discrimination and stem carbohydrate concentration in spring wheat grown in Ningxia Irrigation Region (North-west China). Zhu, Lin,Xu, Xing,Zhu, Lin,Liang, Zong Suo,Zhu, Lin,Li, Shu Hua,Xu, Xing,Zhang, Zhan Feng. 2010

[15]Identification and validation of a novel major QTL for harvest index in rice (Oryza sativa L.). Zhang, Shaohong,He, Xiuying,Zhao, Junliang,Cheng, Yongsheng,Chen, Yuehan,Yang, Tifeng,Dong, Jingfang,Wang, Xiaofei,Liu, Qing,Liu, Wei,Mao, Xingxue,Fu, Hua,Chen, Zhaoming,Liao, Yaoping,Liu, Bin,Zhang, Shaohong,He, Xiuying,Zhao, Junliang,Cheng, Yongsheng,Chen, Yuehan,Yang, Tifeng,Dong, Jingfang,Wang, Xiaofei,Liu, Qing,Liu, Wei,Mao, Xingxue,Fu, Hua,Chen, Zhaoming,Liao, Yaoping,Liu, Bin,Xie, Zhimei,Xie, Zhimei. 2017

[16]Developing rice cultivars for high-fertility upland systems in the Asian tropics. Atlin, GN,Lafitte, HR,Tao, D,Laza, A,Amante, A,Courtois, B. 2006

[17]Genotypic Variationin Nitrogen Utilization Efficiency of Oilseed Rape (Brassica napus) Under Contrasting N Supply in Pot and Field Experiments. He, Huiying,Yang, Rui,Li, Yajun,Ma, Aisheng,Cao, Lanqin,Tian, Hui,Gao, Yajun,Wu, Xiaoming,Chen, Biyun,Gao, Yajun. 2017

[18]Evidences for the association between carbon isotope discrimination and grain yield-Ash content and stem carbohydrate in spring wheat grown in Ningxia (Northwest China). Zhu, Lin,Liang, Zong Suo,Xu, Xing,Zhu, Lin,Xu, Xing,Zhu, Lin,Li, Shu Hua,Monneveux, P.. 2009

[19]Comparison of high-yield rice in tropical and subtropical environments - I. Determinants of grain and dry matter yields. Ying, JF,Peng, SB,He, QR,Yang, H,Yang, CD,Visperas, RM,Cassman, KG. 1998

[20]EXTRACTING SPATIAL INFORMATION OF HARVEST INDEX FOR WINTER WHEAT BASED ON MODIS NDVI IN NORTH CHINA. Ren, Jianqiang,Chen, Zhongxin,Tang, Huajun,Ren, Jianqiang,Chen, Zhongxin,Tang, Huajun,Liu, Xingren. 2010

作者其他论文 更多>>