Prediction of soluble solids content of apple using the combination of spectra and textural features of hyperspectral reflectance imaging data

文献类型: 外文期刊

第一作者: Fan, Shuxiang

作者: Fan, Shuxiang;Zhang, Baohua;Li, Jiangbo;Liu, Chen;Huang, Wenqian;Tian, Xi;Fan, Shuxiang;Zhang, Baohua;Li, Jiangbo;Liu, Chen;Huang, Wenqian;Tian, Xi;Fan, Shuxiang;Zhang, Baohua;Li, Jiangbo;Liu, Chen;Huang, Wenqian;Tian, Xi;Fan, Shuxiang;Zhang, Baohua;Li, Jiangbo;Liu, Chen;Huang, Wenqian;Tian, Xi

作者机构:

关键词: Apple;Soluble solids content;Hyperspectral imaging;Textural features;Stability competitive adaptive reweighted sampling

期刊名称:POSTHARVEST BIOLOGY AND TECHNOLOGY ( 影响因子:5.537; 五年影响因子:5.821 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The objective of this study was to improve the detection accuracy of soluble solids content (SSC) of apples by integrating spectra and textural features. The spectral data were directly extracted from the region of interest (ROI) of hyperspectral reflectance images of apples over the region of 400-1000 nm, while the textural features were obtained by a texture analysis conducted on the ROI images based on grey-level co-occurrence matrix (GLCM). A new regression method called combined partial least square (CPLS) was proposed to analyze the integrations of spectra and different kinds of textural features. In this algorithm, the score matrix matrices of the spectral data and textural features were obtained by PLS analysis separately and then used together for calibration. The prediction results indicated that the CPLS model developed with the integration of spectra and correlation feature achieved promising results and improved SSC predictions compared with the spectral data when used alone. Next, stability competitive adaptive reweighted sampling (SCARS) was conducted to select informative wavelengths for SSC prediction. The CPLS model based on the integration of SCARS selected spectra and correlation gave better results than those with the full wavelength range. The correlation coefficient and root mean square errors of prediction set and validation set were 0.9327 and 0.641%, 0.913 and 0.6656%, respectively. Hence, the integration of spectra and correlation extracted from hyperspectral reflectance images, coupled with CPLS and SCARS methods, showed a considerable potential for the determination of SSC in apples. (C) 2016 Elsevier B.V. All rights reserved.

分类号: S3

  • 相关文献

[1]Effectively Predicting Soluble Solids Content in Apple Based on Hyperspectral Imaging. Huang Wen-qian,Li Jiang-bo,Chen Li-ping,Guo Zhi-ming. 2013

[2]Comparative analysis of models for robust and accurate evaluation of soluble solids content in 'Pinggu' peaches by hyperspectral imaging. Chen, Liping. 2017

[3]Prediction of Soluble Solids Content and Firmness of Pears Using Hyperspectral Reflectance Imaging. Fan, Shuxiang,Huang, Wenqian,Guo, Zhiming,Zhang, Baohua,Zhao, Chunjiang,Fan, Shuxiang,Zhao, Chunjiang.

[4]Temperature Compensation for Portable Vis/NIR Spectrometer Measurement of Apple Fruit Soluble Solids Contents. Li Yong-yu,Wang Jia-hua,Qi Shu-ye,Tang Zhi-hui,Jia Shou-xing. 2012

[5]Optimization of Informative Spectral Regions in FT-NIR Spectroscopy for Measuring the Soluble Solids Content of Apple. Wang, Jiahua,Liu, Haiying,Cheng, Jingjing,Cheng, Jingjing,Tang, Zhihui,Han, Donghai. 2015

[6]Application of Characteristic NIR Variables Selection in Portable Detection of Soluble Solids Content of Apple by Near Infrared Spectroscopy. Fan Shu-xiang,Zhao Chun-jiang,Fan Shu-xiang,Huang Wen-qian,Li Jiang-bo,Guo Zhi-ming,Zhao Chun-jiang. 2014

[7]Effect of spectrum measurement position variation on the robustness of NIR spectroscopy models for soluble solids content of apple. Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Huang, Wenqian,Wang, Chaopeng,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Huang, Wenqian,Wang, Chaopeng,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Huang, Wenqian,Wang, Chaopeng,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Huang, Wenqian,Wang, Chaopeng.

[8]Using Vis/NIR Diffuse Transmittance Spectroscopy and Multivariate Analysis to Predicate Soluble Solids Content of Apple. Fan, Shuxiang,Guo, Zhiming,Zhang, Baohua,Huang, Wenqian,Zhao, Chunjiang,Fan, Shuxiang,Guo, Zhiming,Zhang, Baohua,Huang, Wenqian,Zhao, Chunjiang,Fan, Shuxiang,Guo, Zhiming,Zhang, Baohua,Huang, Wenqian,Zhao, Chunjiang,Fan, Shuxiang,Guo, Zhiming,Zhang, Baohua,Huang, Wenqian,Zhao, Chunjiang.

[9]Geographical classification of apple based on hyperspectral imaging. Guo, Zhiming,Huang, Wenqian,Chen, Liping,Zhao, Chunjiang. 2013

[10]Development of a multispectral imaging system for online detection of bruises on apples. Huang, Wenqian,Li, Jiangbo,Wang, Qingyan,Chen, Liping.

[11]Monitoring Plastic-Mulched Farmland by Landsat-8 OLI Imagery Using Spectral and Textural Features. Hasituya,Chen, Zhongxin,Wang, Limin,Wu, Wenbin,Li, He,Jiang, Zhiwei. 2016

[12]Characteristic Wavelengths Selection of Soluble Solids Content of Pear Based on NIR Spectral and LS-SVM. Fan Shu-xiang,Zhao Chun-jiang,Fan Shu-xiang,Huang Wen-qian,Li Jiang-bo,Zhao Chun-jiang,Zhang Bao-hua. 2014

[13]Near-Infrared Spectra Combining with CARS and SPA Algorithms to Screen the Variables and Samples for Quantitatively Determining the Soluble Solids Content in Strawberry. Li Jiang-bo,Guo Zhi-ming,Huang Wen-qian,Zhang Bao-hua,Zhao Chun-jiang. 2015

[14]Assessment of Influence Detective Position Variability on Precision of Near Infrared Models for Soluble Solid Content of Watermelon. Qian Man,Fan Shu-xiang,Chen Li-ping,Qian Man,Huang Wen-qian,Wang Qing-yan,Fan Shu-xiang,Zhang Bao-hua,Chen Li-ping,Qian Man,Huang Wen-qian,Wang Qing-yan,Fan Shu-xiang,Zhang Bao-hua,Chen Li-ping,Qian Man,Huang Wen-qian,Wang Qing-yan,Fan Shu-xiang,Zhang Bao-hua,Chen Li-ping. 2016

[15]A comparative study for the quantitative determination of soluble solids content, pH and firmness of pears by Vis/NIR spectroscopy. Li, Jiangbo,Huang, Wenqian,Zhao, Chunjiang,Zhang, Baohua.

[16]Variable Selection in Visible and Near-Infrared Spectral Analysis for Noninvasive Determination of Soluble Solids Content of 'Ya' Pear. Li, Jiangbo,Huang, Wenqian,Chen, Liping,Fan, Shuxiang,Zhang, Baohua,Guo, Zhiming,Zhao, Chunjiang,Li, Jiangbo.

[17]Feasibility of SSC Prediction for Navel Orange Based on Origin Recognition Using NIR Spectroscopy. Lyu, Qiang,Liao, Qiuhong,Liu, Yanli,Lyu, Qiang,Lan, Yubin. 2015

[18]Identification of seedling cabbages and weeds using hyperspectral imaging. Wei, Deng,Zhao Chunjiang,Xiu, Wang,Huang, Yanbo,Wei, Deng,Zhao Chunjiang,Xiu, Wang,Wei, Deng,Zhao Chunjiang,Xiu, Wang,Wei, Deng,Zhao Chunjiang,Xiu, Wang. 2015

[19]Detection of Wheat Powdery Mildew by Differentiating Background Factors using Hyperspectral Imaging. Zhang, Dongyan,Zhang, Lifu,Zhang, Dongyan,Wang, Xiu,Zhang, Dongyan,Wang, Xiu,Lin, Fenfang,Huang, Yanbo. 2016

[20]Early Detection of Aspergillus parasiticus Infection in Maize Kernels Using Near-Infrared Hyperspectral Imaging and Multivariate Data Analysis. Zhao, Xin,Wang, Wei,Chu, Xuan,Kimuli, Daniel,Li, Chunyang. 2017

作者其他论文 更多>>