Remobilization of vegetative nitrogen to developing grain in wheat (Triticum aestivum L.)

文献类型: 外文期刊

第一作者: Kong, Lingan

作者: Kong, Lingan;Xie, Yan;Hu, Ling;Feng, Bo;Li, Shengdong

作者机构:

关键词: Grain protein content;Nitrogen remobilization;Sink/source relationship;Senescence;Wheat

期刊名称:FIELD CROPS RESEARCH ( 影响因子:5.224; 五年影响因子:6.19 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: A substantial percentage of the grain nitrogen (N) in cereal crops originates from the remobilization of N stored in vegetative tissues before anthesis. In wheat (Triticum aestivum L), the percentage can reach 90%. All vegetative plant parts, including the leaves, stem, sheath, chaff and root, reserve N prior to anthesis and function as sources of nutrients during the grain filling phase. The developing grain per se accumulates nutrients as a sink. Nitrogen remobilization (NR) may be initiated immediately after anthesis, as indicated by decreases in the N or protein contents of the flag leaves. Senescence, a process that involves high macromolecular degradation for grain filling, begins approximately 8-16 days after anthesis. The resulting large amount of N compounds, mainly amino acids, will be remobilized to the grain. Precise programming of the timing and duration of NR and senescence is important. A large body of evidence has demonstrated that NR and senescence are under genetic control. Functional Gpc-1 genes, in combination with the NAC and WRKY transcription factors and their important targets, are involved in early senescence and enhance the grain protein content (GPC). NR and senescence are also regulated by a delicate balance between sink strength and source capacity, environmental factors and field managements. A better understanding of all these steps will reveal potential strategies to further increase GPC and processing quality and to minimize environmental contamination due to excess fertilizer run-off and associated expenses. (C) 2016 Elsevier B.V. All rights reserved.

分类号: S

  • 相关文献

[1]Nitrogen manipulation affects leaf senescence during late seed filling in soybean. Islam, Md. Matiul,Islam, Md. Matiul,Ishibashi, Yushi,Iwaya-Inoue, Mari,Nakagawa, Andressa C. S.,Tomita, Yuki,Zhao, Xin,Arima, Susumu,Zheng, Shao-Hui.

[2]Photosynthetic and biochemical activities in flag leaves of a newly developed superhigh-yield hybrid rice (Oryza sativa) and its parents during the reproductive stage. Zhang, C. -J.,Chu, H. -J.,Chen, G. -X.,Shi, D. -W.,Zuo, M.,Wang, J.,Lu, C. -G.,Wang, P.,Chen, L..

[3]Haynaldia villosa NAM-V1 is linked with the powdery mildew resistance gene Pm21 and contributes to increasing grain protein content in wheat. Zhao, Chuanzhi,Lv, Xindi,Li, Yinghui,Li, Feng,Geng, Miaomiao,Mi, Yangyang,Ni, Zhongfu,Xie, Chaojie,Sun, Qixin,Zhao, Chuanzhi,Lv, Xindi,Li, Yinghui,Li, Feng,Geng, Miaomiao,Mi, Yangyang,Ni, Zhongfu,Xie, Chaojie,Sun, Qixin,Zhao, Chuanzhi. 2016

[4]Wheat Grain Protein Content Estimation Based on Multi-temporal Remote Sensing Data and Generalized Regression Neural Network. Li, Cunjun,Wang, Qian,Wang, Jihua,Wang, Yan,Yang, Xiaodong,Song, Xiaoyu,Huang, Wenjiang. 2012

[5]Study on Predicting Protein Content of Wheat Seeds by Using Wheat Leaves SPAD Value. Gao Fei,Xiao Jing,Gu Yun-hong,Zhen, Jiao,Jin Qing-sheng. 2012

[6]Conditional QTL mapping of protein content in wheat with respect to grain yield and its components. Wang, Lin,Cui, Fa,Jun, Li,Ding, Anming,Zhao, Chunhua,Li, Xingfeng,Feng, Deshun,Gao, Jurong,Wang, Honggang,Wang, Lin,Wang, Jinping,Cui, Fa,Zhao, Chunhua,Jun, Li,Ding, Anming.

[7]Estimating wheat grain protein content from ground-based hyperspectral data using an improved detecting method. Lu, YL,Li, SK,Xie, RZ,Gao, SJ,Wang, KR,Wang, G,Xiao, CH. 2005

[8]Molecular genetic analysis of grain protein content and flour whiteness degree using RILs in common wheat. Sun, Xianyin,Wu, Ke,Qian, Zhaoguo,Sun, Xianyin,Zhao, Yan,Kong, Fanmei,Guo, Ying,Li, Sishen,Wang, Yingying.

[9]Photosynthetic Characteristics of a Super High Yield Cultivar of Winter Wheat During Late Growth Period. Meng Qing-wei,Tian Ji-chun,Zhao Shi-jie,Sui Na,Li Meng. 2010

[10]GENETIC ANALYSIS OF THE GRAIN PROTEIN CONTENT IN SOFT RED WINTER WHEAT (Triticum aestivum L.). Yao, Jinbao,Ma, Hongxiang,Yang, Xueming,Zhou, Miaoping,Yang, Dan. 2014

[11]Estimation of Grain Protein Content in Winter Wheat by Using Three Methods with Hyperspectral Data. Xiu-liang Jin,Wang, Ji-hua,Xiu-liang Jin,Xin-gang Xu,Hai-kuan Feng,Xiao-yu Song,Qian Wang,Xiu-liang Jin,Xin-gang Xu,Hai-kuan Feng,Xiao-yu Song,Qian Wang,Xiu-liang Jin,Wang, Ji-hua,Guo, Wen-shan. 2014

[12]Estimating Wheat Grain Protein Content Using Multi-Temporal Remote Sensing Data Based on Partial Least Squares Regression. Li Cun-jun,Wang Ji-hua,Wang Qian,Wang Da-cheng,Song Xiao-yu,Wang Yan,Huang Wen-jiang,Li Cun-jun,Wang Ji-hua,Huang Wen-jiang. 2012

[13]The allelic distribution and variation analysis of the NAM-B1 gene in Chinese wheat cultivars. Chen Xue-yan,Ji Wan-quan,Chen Xue-yan,Song Guo-qi,Zhang Shu-juan,Li Yu-lian,Gao Jie,Li Gen-ying,Shahidul, Islam,Ma Wu-jun,Shahidul, Islam,Ma Wu-jun. 2017

[14]Assimilation of Two Variables Derived from Hyperspectral Data into the DSSAT-CERES Model for Grain Yield and Quality Estimation. Li, Zhenhai,Xu, Xingang,Zhao, Chunjiang,Yang, Guijun,Feng, Haikuan,Li, Zhenhai,Xu, Xingang,Zhao, Chunjiang,Yang, Guijun,Feng, Haikuan,Li, Zhenhai,Wang, Jihua,Wang, Jihua,Xu, Xingang,Zhao, Chunjiang,Yang, Guijun,Feng, Haikuan,Xu, Xingang,Zhao, Chunjiang,Yang, Guijun,Feng, Haikuan,Jin, Xiuliang. 2015

[15]EFFECTS OF REGULATED DEFICIT IRRIGATION ON GRAIN YIELD AND QUALITY TRAITS IN WINTER WHEAT. Meng, Zhaojiang,Duan, Aiwang,Gao, Yao,Wang, Xiaosen,Shen, Xiaojun,Dassanayake, Kithsiri Bandara,Chen, Deli.

[16]Genetic Variation of High Molecular Weight Glutenin Subunits in Wheat Accessions in China. Guo, Xiaomin,Li, Hongqin,Xiang, Jishan,Xu, Xin,Liu, Weihua,Gao, Ainong,Yang, Xinming,Li, Xiuquan,Li, Lihui,Wang, Ruihui.

[17]Mapping quantitative trait loci for quality factors in an inter-class cross of US and Chinese wheat. Bai, Guihua,Sun, Xiaochun,Marza, Felix,Carver, Brett F.,Ma, Hongxiang.

[18]Estimating wheat yield and quality by coupling the DSSAT-CERES model and proximal remote sensing. Li, Zhenhai,Jin, Xiuliang,Zhao, Chunjiang,Xu, Xingang,Yang, Guijun,Li, Cunjun,Shen, Jiaxiao,Li, Zhenhai,Jin, Xiuliang,Zhao, Chunjiang,Xu, Xingang,Yang, Guijun,Li, Cunjun,Shen, Jiaxiao,Zhao, Chunjiang,Zhao, Chunjiang,Li, Zhenhai,Wang, Jihua,Wang, Jihua,Shen, Jiaxiao.

[19]Effects of selenium and sulfur on antioxidants and physiological parameters of garlic plants during senescence. Cheng Bo,Lian Hai-feng,Yu Xin-hui,Sun Ya-li,Sun Xiu-dong,Shi Qing-hua,Liu Shi-qi,Liu Ying-ying. 2016

[20]Cloning and characterization of a gene encoding cysteine proteases from senescent leaves of Gossypium hirsutum. Shen, FF,Yu, SX,Han, XL,Fan, SL.

作者其他论文 更多>>