Single nucleotide polymorphism tightly linked to a major QTL on chromosome 7A for both kernel length and kernel weight in wheat

文献类型: 外文期刊

第一作者: Su, Zhenqi

作者: Su, Zhenqi;Su, Zhenqi;Jin, Sujuan;Lu, Yue;Zhang, Guorong;Bai, Guihua;Jin, Sujuan;Chao, Shiaoman;Bai, Guihua

作者机构:

关键词: Triticum aestivum;92K SNP array;TaTKW-7AL;KASPar markers;Pleiotropic effect on yield traits

期刊名称:MOLECULAR BREEDING ( 影响因子:2.589; 五年影响因子:2.75 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Thousand-kernel weight (TKW) is one of the major components of grain yield in wheat (Triticum aestivum). Identifying major quantitative trait loci (QTLs) for TKW and developing effective markers are prerequisite for success in marker-assisted selection (MAS) to improve wheat yield through breeding. This study mapped a major QTL, designated as TaTKW-7AL, for increasing TKW on the long arm of chromosome 7A of 'Clark' to a 1.3-cM interval between single nucleotide polymorphism (SNP) markers IWB13913 and IWA5913. This QTL explained 19.7 % of the phenotypic variation for TKW. A QTL for increasing kernel length (KL), one of the major components of TKW, was mapped in the same interval as TaTKW-7AL, suggesting that increased TKW by the QTL in 'Clark' is most likely due to the increased KL. Association analysis on a diversity panel of 200 US winter wheat accessions also identified a haplotype of three SNP markers (IWB13913, IWB6693 and IWA5913) that were tightly associated with the both KL and TKW. The analysis of allele frequencies of the haplotype in the diversity panel suggested that the favorable allele of TaTKW-7AL has not been strongly selected for in practice and has potential to be used to improve grain yield in US hard winter wheat breeding. Two user-friendly flanking KASParmarkers, IWB13913 and IWA5913, were developed for MAS of TaTKW-7AL.

分类号: Q94

  • 相关文献

[1]Chromosome sorting and its applications in common wheat (Triticum aestivum) genome sequencing. Wu SuoWei,Zheng Xu,Liu BingHua,Yang Li,Song MeiFang,Zhou Peng,Zhou Yang,Meng FanHua,Wang ShanHong,Liu HongWei,Zhai HuQu,Yang JianPing,Xiao Yang,Zheng Xu,Cai YingFan,Yang JianPing,Dolezel, Jaroslav,Song MeiFang. 2010

[2]Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers. Dongyun Ma,Jun Yan,Zhonghu He,Ling Wu,Xianchun Xia.

[3]Mineral element concentrations in grains of Chinese wheat cultivars. Yong Zhang,Qichao Song,Jun Yan,Jianwei Tang,Rongrong Zhao,Yueqiang Zhang,Zhonghu He,Chunqin Zou,Ivan Ortiz-Monasterio. 2010

[4]Breeding Adult Plant Resistance to Stripe Rust in Spring Bread Wheat Germplasm Adapted to Sichuan Province of China. Zou, Y. C.,Yang, W. Y.,Tang, Y. L.,He, Z. H.,Singh, R. P.. 2011

[5]Cloning of 9-cis-epoxycarotenoid dioxygenase gene (TaNCED1) from wheat and its heterologous expression in tobacco. Zhang, S. J.,Song, G. Q.,Li, Y. L.,Gao, J.,Liu, J. J.,Fan, Q. Q.,Huang, C. Y.,Sui, X. X.,Chu, X. S.,Guo, D.,Li, G. Y.. 2014

[6]Development of dominant nuclear male-sterile lines with a blue seed marker in durum and common wheat. Liu, ZQ. 2001

[7]Inheritance in hexaploid wheat of genes for hairy auricles and hairy leaf sheath derived from Aegilops tauschii Coss.. Wu, BH,Hu, XR,Ye, Y,Zhang, Y. 1999

[8]A push-pull strategy to control aphids combines intercropping with semiochemical releases. Hatt, Severin,Zhang, Yong,Chen, Julian,Xu, Qinxuan,Hatt, Severin,Lopes, Thomas,Zhang, Yong,Francis, Frederic,Hatt, Severin,Bodson, Bernard. 2018

[9]Identification of a new stripe rust resistance gene in Chinese winter wheat Zhongmai 175. Lu Jia-ling,Chen Can,Liu Peng,He Zhong-hu,Xia Xian-chun,Chen Can,He Zhong-hu. 2016

[10]A major QTL controlling seed dormancy and pre-harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace. Bai, Gui-Hua,Chen, Cui-Xia,Cai, Shi-Bin,Cai, Shi-Bin. 2008

[11]Molecular cytogenetic identification of Triticum aestivum Secale cereale substitution and addition lines. Li, HJ,Zhu, ZQ,Zhang, YM,Guo, BH,Wen, YX,Jia, X. 1998

[12]The effect of low water content on seed longevity. Hu, CL,Zhang, YL,Tao, M,Hu, XR,Jiang, CY. 1998

[13]Quantitative trait loci for Aluminum resistance in wheat cultivar Chinese Spring. Ma, Hong-Xiang,Bai, Gui-Hua,Lu, Wei-Zhong. 2006

[14]Variation of B Chromosome Associated with Tissue Culture in Wheat-rye Cross. Li, Hongjie,Tian, Bohong. 2009

[15]Relationship between hybrid performance and genetic diversity based on RAPD markers in wheat, Triticum aestivum L.. Pei, Y,Pu, ZJ. 1999

[16]Comparing two approaches for introgression of germplasm from Aegilops tauschii into common wheat. Cox, Thomas S.,Wu, Jizhong,Wang, Shuwen,Cai, Jin,Zhong, Qiaofeng,Fu, Bisheng,Cox, Thomas S.,Wang, Shuwen. 2017

[17]QTL Mapping of Adult-Plant Resistance to Leaf Rust in the Wheat Cross Zhou 8425B/Chinese Spring Using High-Density SNP Markers. Zhang, Peipei,Qi, Aiyong,Li, Zaifeng,Liu, Daqun,Yin, Guihong,Zhou, Yue,Gao, Fengmei,Xia, Xianchun,He, Zhonghu. 2017

[18]Molecular characterization of the genomic region harboring the BYDV-resistance gene Bdv2 in wheat. Xin, Z.,Zhang, Z.,Gao, L.,Ma, Q.,Liu, Y.. 2009

[19]Wheat stripe rust in China. Chen, X. M.,He, Z. H.. 2007

[20]Identification of SNPs and development of allelic specific PCR markers for high molecular weight glutenin subunit D(t)x1.5 from Aegilops tauschii through sequence characterization. Yang, WY,Zhang, WJ,Lu, BR. 2005

作者其他论文 更多>>