Natural Variations in SLG7 Regulate Grain Shape in Rice

文献类型: 外文期刊

第一作者: Miao, Jun

作者: Miao, Jun;Peng, Xiurong;Leburu, Mamotshewa;Yuan, Fuhai;Gu, Houwen;Gao, Yun;Tao, Yajun;Gong, Zhiyun;Yi, Chuandeng;Gu, Minghong;Yang, Zefeng;Liang, Guohua;Gu, Haiyong;Zhu, Jinyan

作者机构:

关键词: rice;quantitative trait loci;grain shape;cell elongation

期刊名称:GENETICS ( 影响因子:4.562; 五年影响因子:4.845 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Rice (Oryza sativa) grain shape, which is controlled by quantitative trait loci (QTL), has a strong effect on yield production and quality. However, the molecular basis for grain development remains largely unknown. In this study, we identified a novel QTL, Slender grain on chromosome 7 (SLG7), that is responsible for grain shape, using backcross introgression lines derived from 9311 and Azucena. The SLG7 allele from Azucena produces longer and thinner grains, although it has no influence on grain weight and yield production. SLG7 encodes a protein homologous to LONGIFOLIA 1 and LONGIFOLIA 2, both of which increase organ length in Arabidopsis. SLG7 is constitutively expressed in various tissues in rice, and the SLG7 protein is located in plasma membrane. Morphological and cellular analyses suggested that SLG7 produces slender grains by longitudinally increasing cell length, while transversely decreasing cell width, which is independent from cell division. Our findings show that the functions of SLG7 family members are conserved across monocots and dicots and that the SLG7 allele could be applied in breeding to modify rice grain appearance.

分类号: R394

  • 相关文献

[1]GNS4, a novel allele of DWARF11, regulates grain number and grain size in a high-yield rice variety. Zhou, Yong,Tao, Yajun,Miao, Jun,Liu, Jun,Liu, Yanhua,Yi, Chuandeng,Yang, Zefeng,Gong, Zhiyun,Liang, Guohua,Zhu, Jinyan. 2017

[2]A Kelch Motif-Containing Serine/Threonine Protein Phosphatase Determines the Large Grain QTL Trait in Rice. Hu, Zejun,Sun, Fan,Xin, Xiaoyun,Qian, Xi,Yang, Jingshui,Luo, Xiaojin,Hu, Zejun,He, Haohua,Wang, Wenxiang,Zhang, Shiyong. 2012

[3]Scanning QTLs for Grain Shape using Two Sets of Introgression Lines in Rice. Qiu, Xianjin,Du, Bin,Hu, Hui,Ou, Xiaoxue,Lv, Wenkai,Yang, Longwei,Xing, Danying,Xu, Junying,Li, Zhixin,Zhang, Yunbo,Wang, Xiaoyan,Xu, Jianlong,Xu, Jianlong,Zheng, Tianqing,Qiu, Xianjin. 2017

[4]Brassinosteroids Regulate OFP1, a DLT Interacting Protein, to Modulate Plant Architecture and Grain Morphology in Rice. Xiao, Yunhua,Liu, Dapu,Zhang, Guoxia,Chu, Chengcai,Xiao, Yunhua,Liu, Dapu,Zhang, Guoxia,Chu, Chengcai,Xiao, Yunhua,Liu, Dapu,Zhang, Guoxia,Chu, Chengcai,Tong, Hongning. 2017

[5]Dissecting the Genetic Basis of Extremely Large Grain Shape in Rice Cultivar 'JZ1560'. Ying, Jie-Zheng,Gao, Ji-Ping,Shan, Jun-Xiang,Zhu, Mei-Zhen,Shi, Min,Lin, Hong-Xuan,Ying, Jie-Zheng,Gao, Ji-Ping,Shan, Jun-Xiang,Zhu, Mei-Zhen,Shi, Min,Lin, Hong-Xuan,Ying, Jie-Zheng. 2012

[6]New Candidate Genes Affecting Rice Grain Appearance and Milling Quality Detected by Genome-Wide and Gene-Based Association Analyses. Wang, Xiaoqian,Pang, Yunlong,Wang, Chunchao,Shen, Congcong,Xu, Jianlong,Li, Zhikang,Chen, Kai,Zhu, Yajun,Xu, Jianlong,Ali, Jauhar,Xu, Jianlong,Li, Zhikang. 2017

[7]Molecular functions of genes related to grain shape in rice. Zheng, Jia,Zhang, Yadong,Wang, Cailin.

[8]Genome wide association mapping for grain shape traits in indica rice. Feng, Yue,Lu, Qing,Zhang, Mengchen,Xu, Qun,Yang, Yaolong,Wang, Shan,Yuan, Xiaoping,Yu, Hanyong,Wang, Yiping,Wei, Xinghua,Zhai, Rongrong.

[9]Detection of epistatic interactions of three QTLs for heading date in rice using single segment substitution lines. Ding, Han-Feng,Liu, Xu,Li, Run-Fang,Wang, Wen-Ying,Zhang, Y.,Zhang, Xiao-Dong,Yao, Fang-Yin,Li, Guang-Xian,Jiang, Ming-Song,Ding, Han-Feng.

[10]Dissection of heterosis for yield and related traits using populations derived from introgression lines in rice. Xiang, Chao,Zhang, Hongjun,Wei, Shaobo,Fu, Binying,Gao, Yongming,Wang, Hui,Xia, Jiafa,Li, Zefu,Ye, Guoyou. 2016

[11]Quantitative trait loci for grain-quality traits across a rice F-2 population and backcross inbred lines. Lu, Bingyue,Yang, Chunyan,Xie, Kun,Zhang, Long,Wu, Tao,Li, Linfang,Liu, Xi,Jiang, Ling,Wan, Jianmin,Lu, Bingyue,Wan, Jianmin. 2013

[12]Identification of quantitative trait loci for phosphorus use efficiency traits in rice using a high density SNP map. Wang, Kai,Cui, Kehui,Liu, Guoling,Xie, Weibo,Yu, Huihui,Huang, Jianliang,Nie, Lixiao,Shah, Farooq,Peng, Shaobing,Wang, Kai,Cui, Kehui,Liu, Guoling,Pan, Junfeng,Huang, Jianliang,Nie, Lixiao,Shah, Farooq,Peng, Shaobing,Pan, Junfeng,Shah, Farooq. 2014

[13]Quantitative trait loci mapping of resistance to Laodelphax striatellus (Homoptera : Delphacidae) in rice using recombinant inbred lines. Duan, Can-Xong,Wan, Jian-Min,Zhai, Hu-Qu,Chen, Qing,Wang, Jian-Kang,Su, Ning,Lei, Cai-Lin.

[14]Identification of Quantitative Trait Loci for Bacterial Blight Resistance Derived from Oryza meyeriana and Agronomic Traits in Recombinant Inbred Lines of Oryza sativa. Chen, Li-Na,Yang, Yong,Yan, Cheng-Qi,Wang, Ming,Yu, Chu-Lang,Zhou, Jie,Cheng, Ye,Cheng, Xiao-Yue,Chen, Jian-Ping,Chen, Li-Na,Zhang, Wei-Lin,Cheng, Xiao-Yue. 2012

[15]QTLs for rice flag leaf traits in doubled haploid populations in different environments. Cai, J.,Zhang, M.,Guo, L. B.,Li, X. M.,Ma, L. Y.,Bao, J. S.. 2015

[16]Quantitative trait loci for cold tolerance of rice recombinant inbred lines in low temperature environments. Jiang, Wenzhu,Pan, Hong-Yu,Du, Xinglin,Jin, Yong-Mei,Lee, Joohyun,Lee, Kang-Ie,Piao, Rihua,Koh, Hee-Jong,Jin, Yong-Mei,Lee, Joohyun,Lee, Kang-Ie,Piao, Rihua,Koh, Hee-Jong,Han, Longzhi,Shin, Jin-Chul,Jin, Rong-De,Cao, Tiehua. 2011

[17]Identification of salt tolerance-improving quantitative trait loci alleles from a salt-susceptible rice breeding line by introgression breeding. Qiu, Xianjin,Yuan, Zhihua,Liu, Huan,Yang, Longwei,He, Wenjing,Du, Bin,Xing, Danying,Xiang, Xiaojiao,Xu, Jianlong,Ye, Guoyou,Xu, Jianlong.

[18]Identification and fine mapping of qPH6, a novel major quantitative trait locus for plant height in rice. Yuan, Yuan,Miao, Jun,Tao, Yajun,Du, Peina,Wang, Zhongde,Chen, Da,Gong, Zhiyun,Yi, Chuandeng,Dong, Guichun,Gu, Minghong,Zhou, Yong,Liang, Guohua,Ji, Chaoqiu,Wang, Jun,Zhu, Jinyan.

[19]Quantitative Trait Loci for Panicle Layer Uniformity Identified in Doubled Haploid Lines of Rice in Two Environments. Ma, Liangyong,Guo, Longbiao,Zeng, Dali,Li, Ximing,Ji, Zhijuan,Yang, Changdeng,Qian, Qian,Ma, Liangyong,Bao, Jinsong,Xia, Yingwu,Ma, Liangyong,Bao, Jinsong,Xia, Yingwu. 2009

[20]Mapping of quantitative trait loci controlling physico-chemical properties of rice grains (Oryza sativa L.). Li, ZF,Wan, JM,Xia, JF,Yano, M.

作者其他论文 更多>>