The Hairless Stem Phenotype of Cotton (Gossypium barbadense) Is Linked to a Copia-Like Retrotransposon Insertion in a Homeodomain-Leucine Zipper Gene (HD1)

文献类型: 外文期刊

第一作者: Mingquan Ding;;Wuwei Ye

作者: Mingquan Ding;Wuwei Ye;Lifeng Lin;Shae He;Xiongming Du;Aiqun Chen;Yuefen Cao;Yuan Qin;Fen Yang;Yurong Jiang;Hua Zhang;Xiyin Wang;Andrew H. Paterson;Junkang Rong

作者机构:

关键词: Gossypium barbadense;glabrous stem;homeodomain-leucine zipper gene (HD1);T1 locus;Ty1 retrotransposon element

期刊名称:GENETICS ( 影响因子:4.562; 五年影响因子:4.845 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Cotton (Gossypium) stem trichomes are mostly single cells that arise from stem epidermal cells. In this study, a homeodomain-leucine zipper gene (HD1) was found to cosegregate with the dominant trichome locus previously designated as T1 and mapped to chromosome 6. Characterization of HD1 orthologs revealed that the absence of stem trichomes in modern Gossypium barbadense varieties is linked to a large retrotransposon insertion in the ninth exon, 2565 bp downstream from the initial codon in the At subgenome HD1 gene (At-GbHD1). In both the At and Dt subgenomes, reduced transcription of GbHD1 genes is caused by this insertion. The disruption of At-HD1 further affects the expression of downstream GbMYB25 and GbHOX3 genes. Analyses of primitive cultivated accessions identified another retrotransposon insertion event in the sixth exon of At-GbHD1 that might predate the previously identified retrotransposon in modern varieties. Although both retrotransposon insertions results in similar phenotypic changes, the timing of these two retrotransposon insertion events fits well with our current understanding of the history of cotton speciation and dispersal. Taken together, the results of genetics mapping, gene expression and association analyses suggest that GbHD1 is an important component that controls stem trichome development and is a promising candidate gene for the T1 locus. The interspecific phenotypic difference in stem trichome traits also may be attributable to HD1 inactivation associated with retrotransposon insertion.

分类号: R394

  • 相关文献

[1]Constructing a high-density linkage map for Gossypium hirsutum x Gossypium barbadense and identifying QTLs for lint percentage. Yuzhen Shi,Wentan Li,Aiguo Li,Ruihua Ge,Baocai Zhang,Junzhi Li,Guangping Liu,Junwen Li,Aiying Liu,Haihong Shang,Juwu Gong,Wankui Gong,Zemao Yang,Feiyü Tang,Zhi Liu,Weiping Zhu,Jianxiong Jiang,Xiaonan Yu,Tao Wang,Wei Wang,Tingting Chen,Kunbo Wang,Zhengsheng Zhang,Youlu Yuan. 2015

[2]Isolation and Characterization of an ERF Transcription Factor Gene from Cotton (Gossypium barbadense L.). Xianpeng Meng,Fuguang Li,Chuanliang Liu,Chaojun Zhang,Zhixia Wu,Yajuan Chen.

[3]Association analysis of yield and fiber quality traits in Gossypium barbadense with SSRs and SRAPs. Wang, X. Q.,Yu, Y.,Li, W.,Guo, H. L.,Lin, Z. X.,Zhang, X. L.,Wang, X. Q.,Yu, Y.,Li, W.,Guo, H. L.,Lin, Z. X.,Zhang, X. L.,Yu, Y.. 2013

[4]Genetic dissection of the introgressive genomic components from Gossypium barbadense L. that contribute to improved fiber quality in Gossypium hirsutum L.. Wang, Furong,Xu, Zhenzhen,Sun, Ran,Gong, Yongchao,Liu, Guodong,Zhang, Jingxia,Wang, Liuming,Zhang, Chuanyun,Zhang, Jun,Wang, Furong,Xu, Zhenzhen,Sun, Ran,Fan, Shoujin,Zhang, Jun.

[5]Cloning and sequence analysis of a gene encoding polygalacturonase-inhibiting protein from cotton. Dou, DL,Wang, BS,Tang, YX,Wang, ZX,Sun, JS. 2003

[6]Proteomic analysis of the sea-island cotton roots infected by wilt pathogen Verticillium dahliae. Ma, Yin-Ping,Yang, Chun-Lin,Zhao, Pi-Ming,Yao, Yuan,Luo, Yuan-Ming,Xia, Gui-Xian,Wang, Fu-Xin,Ma, Yin-Ping,Yang, Chun-Lin,Zhao, Pi-Ming,Yao, Yuan,Xia, Gui-Xian,Jian, Gui-Liang,Luo, Yuan-Ming. 2011

[7]Molecular cloning and characterization of enhanced disease susceptibility 1 (EDS1) from Gossypium barbadense. Su, Xiaofeng,Qi, Xiliang,Cheng, Hongmei.

[8]Overexpression of the Gossypium barbadense Actin-Depolymerizing Factor 1 Gene Mediates Biological Changes in Transgenic Tobacco. Chi, Jina,Han, Yucui,Wang, Xingfen,Wu, Lizhu,Zhang, Guiyin,Ma, Zhiying,Chi, Jina.

[9]A Cotton MYB Transcription Factor, GbMYB5, is Positively Involved in Plant Adaptive Response to Drought Stress. Chen, Tianzi,Li, Wenjuan,Liu, Aimin,Zhang, Baolong,Li, Wenjuan,Hu, Xuehong,Guo, Jiaru,Liu, Aimin.

[10]A novel Gossypium barbadense ERF transcription factor, GbERFb, regulation host response and resistance to Verticillium dahliae in tobacco. Liu, Jianguang,Wang, Yongqiang,Zhao, Guiyuan,Zhao, Junli,Du, Haiying,Zhang, Hanshuang,He, Xiaoliang.

作者其他论文 更多>>