High-level expression and biochemical characterization of a novel cold-active lipase from Rhizomucor endophyticus

文献类型: 外文期刊

第一作者: Duan, Xiaojie

作者: Duan, Xiaojie;Liu, Yu;Jiang, Zhengqiang;Yang, Shaoqing;Zheng, Mingming

作者机构:

关键词: Cold active lipase;Gene cloning;Lipase;Organic solvent tolerance;Pichia pastoris;Rhizomucor endophyticus

期刊名称:BIOTECHNOLOGY LETTERS ( 影响因子:2.461; 五年影响因子:2.457 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: A novel cold-active lipase gene (ReLipB) from Rhizomucor endophyticus was cloned. ReLipB was expressed at a high level in Pichia pastoris using high cell-density fermentation in a 5-l fermentor with the highest lipase activity of 1395 U/ml. The recombinant lipase (RelipB) was purified and biochemically characterized. ReLipB was most active at pH 7.5 and 25 A degrees C. It was stable from pH 4.5-9.0. It exhibited broad substrate specificity towards p-nitrophenyl (pNP) esters (C-2-C-16) and triacylglycerols (C-2-C-12), showing the highest specific activities towards pNP laurate (231 U/mg) and tricaprylin (1840 U/mg), respectively. In addition, the enzyme displayed excellent stability with high concentrations of organic solvents including cyclohexane, n-hexane, n-heptane, isooctane and petroleum ester and surfactants.

分类号: Q7

  • 相关文献

[1]Isolation of a Novel Lipase Gene from Serratia liquefaciens S33 DB-1, Functional Expression in Pichia pastoris and its Properties. Yao, Hongyan,Yu, Shunwu,Zuo, Kaijing,Ling, Hua,Zhang, Fei,Tang, Kexuan,Yu, Shunwu.

[2]Heterologous production of an acidic thermostable lipase with broad-range pH activity from thermophilic fungus Neosartorya fischeri P1. Sun, Qiaoqiao,Wang, Hui,Luo, Huiying,Shi, Pengjun,Bai, Yingguo,Yao, Bin,Huang, Huoqing,Sun, Qiaoqiao,Zhang, Huitu,Lu, Fuping.

[3]Effects of DIMBOA on several enzymatic systems in Asian corn borer, Ostrinia furnacalis (Guenee). Yan, FM,Xu, CG,Li, SG,Lin, CS,Li, JH. 1995

[4]Isolation and biochemical characterization of two lipases from a metagenomic library of China Holstein cow rumen. Liu, Kailang,Wang, Jiaqi,Bu, Dengpan,Zhao, Shengguo,Yu, Ping,Li, Dan,McSweeney, Chris. 2009

[5]Progress of Lipase-Catalyzed Ester Synthesis in Ionic Liquid. Li Jing,Wang Jun,Zhang Leixia,Gu Shuangshuang,Wu Fuan,Guo Yuewei,Wu Fuan,Guo Yuewei. 2012

[6]A novel chemoenzymatic synthesis of propyl caffeate using lipase-catalyzed transesterification in ionic liquid. Pang, Na,Gu, Shuang-Shuang,Wang, Jun,Cui, Hong-Sheng,Wang, Fang-Qin,Liu, Xi,Zhao, Xing-Yu,Wu, Fu-An,Wu, Fu-An.

[7]Pretreating porcine sperm with lipase enhances developmental competence of embryos produced by intracytoplasmic sperm injection. Wei, Yinghui,Fan, Junhua,Li, Lin,Liu, Zhiguo,Li, Kui.

[8]A novel proteolysis-resistant lipase from keratinolytic Streptomyces fradiae var. k11. Zhang, Yuhong,Meng, Kun,Wang, Yaru,Luo, Huiying,Yang, Peilong,Shi, Pengjun,Yao, Bin,Wu, Ningfeng,Fan, Yunhu,Li, Jiang.

[9]Synthesis and Characterization of Magnetic Nanoparticles and Its Application in Lipase Immobilization. Xu, Jiakun,Ju, Caixia,Sheng, Jun,Wang, Fang,Zhang, Quan,Sun, Guolong,Sun, Mi,Xu, Jiakun,Ju, Caixia,Zhang, Quan,Sun, Guolong. 2013

[10]Lipase-catalyzed Synthesis of Caffeic Acid Phenethyl Ester in Ionic Liquids: Effect of Specific Ions and Reaction Parameters. Wang Jun,Li Jing,Zhang Leixia,Gu Shuangshuang,Wu Fuan,Wu Fuan. 2013

[11]Lipase-Catalyzed Acyl-L-Carnitines Synthesis in [Bmim]PF6 Ionic Liquid. Tian, Jin-qiang,Wang, Qiang. 2009

[12]Lipase-catalyzed acylation of l-carnitine with conjugated linoleic acid in [Bmim]PF6 ionic liquid. Tian, Jinqiang,Wang, Qiang,Tian, Jinqiang,Wang, Qiang,Zhang, Zhongyuan. 2009

[13]Lipase Diversity in Glacier Soil Based on Analysis of Metagenomic DNA Fragments and Cell Culture. Zhang Yuhong,Shi, Pengjun,Meng, Kun,Bai, Yingguo,Wang, Guozeng,Yao, Bin,Zhang Yuhong,Liu, Wanli,Zhan, Zhichun.

[14]Ultrasound irradiation accelerates the lipase-catalyzed synthesis of methyl caffeate in an ionic liquid. Wang, Jun,Wang, Shasha,Li, Zhongjian,Gu, Shuangshuang,Wu, Fuan,Wang, Jun,Wang, Shasha,Li, Zhongjian,Gu, Shuangshuang,Wu, Fuan,Wang, Jun,Wu, Xiangyang.

[15]From microalgae oil to produce novel structured triacylglycerols enriched with unsaturated fatty acids. Wang, Jun,Wang, Xu-Dong,Zhao, Xing-Yu,Liu, Xi,Wu, Fu-An,Wang, Jun,Wu, Fu-An,Dong, Tao.

[16]Physicochemical properties of lipase-catalyzed laurylation of corn starch. Gao, Yan,Wang, Lan,Xiong, Guangquan,Wu, Wenjin,Qiao, Yu,Liao, Li,Gao, Yan,Yue, Xiali. 2014

[17]Microfluidic biocatalysis enhances the esterification of caffeic acid and methanol under continuous-flow conditions. Wang, Sha-Sha,Li, Zhong-Jian,Sheng, Sheng,Wu, Fu-An,Wang, Jun,Sheng, Sheng,Wu, Fu-An,Wang, Jun.

[18]Lipase immobilized in ordered mesoporous silica: A powerful biocatalyst for ultrafast kinetic resolution of racemic secondary alcohols. Zheng, Mingming,Xiang, Xia,Wang, Shi,Shi, Jie,Deng, Qianchun,Huang, Fenghong,Deng, Qianchun,Cong, Renhuai,Deng, Qianchun,Cong, Renhuai. 2017

[19]Characterization of a novel lipase and its specific foldase from Acinetobacter sp XMZ-26. Zheng, Xiaomei,Wu, Ningfeng,Fan, Yunliu. 2012

[20]Probing the molecular determinant of the lipase-specific foldase Lif26 for the interaction with its cognate Lip26. Zheng, Xiaomei,Tian, Jian,Wu, Ningfeng,Fan, Yunliu.

作者其他论文 更多>>