New combination of xylanolytic bacteria isolated from the lignocellulose degradation microbial consortium XDC-2 with enhanced xylanase activity

文献类型: 外文期刊

第一作者: Zhang, Dongdong

作者: Zhang, Dongdong;Wang, Yi;Zheng, Dan;Guo, Peng;Cheng, Wei;Cui, Zongjun

作者机构:

关键词: Lignocellulose degradation;Extracellular xylanase activity;Synthetic microbial community;Bacillus subtilis;Clostridium sartagoforme

期刊名称:BIORESOURCE TECHNOLOGY ( 影响因子:9.642; 五年影响因子:9.237 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Three bacterial strains with extracellular xylanase activity were isolated from the microbial consortium XDC-2. The aerobic strain A7, belonging to Bacillus sp., was combined with the anaerobe Clostridium sp. strain AA3 and/or Bacteroides sp. strain AA4 to obtain an efficient natural xylanolytic complex enzyme. The synthetic microbial community M1 consisting of strains Bacillus and Clostridium showed enhanced extracellular xylanase activity and production, and higher lignocelluloses degradation capability than any of the pure cultures and other synthetic microbial communities. Neither corn straw degradation nor extracellular xylanase activity was enhanced in the other synthetic microbial communities, Bacillus, Bacteroides with or without Clostridium. Quantitative polymerase chain reaction showed that the aerobic strain Bacillus enabled the growth of the anaerobic strain Clostridium, but not that of the anaerobic strain Bacteroides. These findings suggest that strains Bacillus and Clostridium can coexist well and have a positive synergistic interaction for extracellular xylanase secretion and lignocellulose degradation. (C) 2016 Elsevier Ltd. All rights reserved.

分类号: Q

  • 相关文献

[1]Degradation of Lignocellulosic Components in Un-pretreated Vinegar Residue Using an Artificially Constructed Fungal Consortium. Cui, Yaoming,Dong, Xiaofang,Tong, Jianming,Liu, Song. 2015

[2]Effects of different pretreatment strategies on corn stalk acidogenic fermentation using a microbial consortium. Guo, Peng,Wang, Xiaofen,Cui, Zongjun,Guo, Peng,Cheng, Wei,Zhou, Ming,Gao, Hong,Guo, Peng,Mochidzuki, Kazuhiro,Zheng, Dan.

[3]Bioconversion of un-pretreated lignocellulosic materials by a microbial consortium XDC-2. Wang Hui,Li Jiajia,Wang Xiaofen,Cui Zongjun,Lu Yucai,Guo Peng,Wang Hui,Kazuhiro, Mochidzuki.

[4]Aflatoxin B1 degradation by Bacillus subtilis UTBSP1 isolated from pistachio nuts of Iran. Farzaneh, Mohsen,Sedaghat, Narges,Ahmadzadeh, Masoud,Javan-Nikkhah, Mohammad,Farzaneh, Mohsen,Shi, Zhi-Qi,Farzaneh, Mohsen,Ghassempour, Alireza,Mirabolfathy, Mansoureh. 2012

[5]Synergistic effects of the combined application of Bacillus subtilis H158 and strobilurins for rice sheath blight control. Liu, Lianmeng,Liang, Mengqi,Li, Lu,Sun, Lei,Xu, Yihua,Gao, Jian,Wang, Ling,Hou, Yuxuan,Huang, Shiwen,Liu, Lianmeng,Li, Lu,Sun, Lei,Xu, Yihua,Huang, Shiwen. 2018

[6]Inhibition of the Aspergillus flavus Growth and Aflatoxin B1 Contamination on Pistachio Nut by Fengycin and Surfactin-Producing Bacillus subtilis UTBSP1. Farzaneh, Mohsen,Ghassempour, Alireza,Farzaneh, Mohsen,Shi, Zhi-Qi,Hu, Liang-Bin,Ahmadzadeh, Masoud,Hu, Liang-Bin. 2016

[7]Chemical composition and in vitro antioxidant property of peptides produced from cottonseed meal by solid-state fermentation. Sun, Hong,Yao, Xiaohong,Wang, Xin,Wu, Yifei,Liu, Yong,Tang, Jiangwu,Feng, Jie. 2015

[8]An enhanced vector-free allele exchange (VFAE) mutagenesis protocol for genome editing in a wide range of bacterial species. Gomaa, Ahmed E.,Zhang, Chen,Yang, Zhimin,Shang, Liguo,Jiang, Shijie,Deng, Zhiping,Zhan, Yuhua,Lu, Wei,Lin, Min,Yan, Yongliang. 2017

[9]Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916. Chen, Zhiyi,Ng, T. B.,Zhang, Jie,Zhou, Mingguo,Song, Fuping,Lu, Fan,Liu, Youzhou. 2007

[10]Formulations of the endophytic bacterium Bacillus subtilis Tu-100 suppress Sclerotinia sclerotiorum on oilseed rape and improve plant vigor in field trials conducted at separate locations. Roberts, Daniel P.,Maul, Jude E.,Emche, Sarah E.,McKenna, Laurie F.,Buyer, Jeffrey S.,Hu, Xiaojia,Liao, Xing,Guo, Xuelan,Liu, Yeying,Liu, Shengyi. 2011

[11]Biological Effect and Inactivation Mechanism of Bacillus subtilis Exposed to Pulsed Magnetic Field: Morphology, Membrane Permeability and Intracellular Contents. Qian, Jingya,Zhou, Cunshan,Ma, Haile,Li, Shujun,Abdualrahman, Mohammed A. Y.,Qian, Jingya,Zhou, Cunshan,Ma, Haile,Qian, Jingya,Li, Shujun,Yagoub, Abu ElGasim A.,Abdualrahman, Mohammed A. Y.. 2016

[12]Improvement of the Nutritional Quality of Cottonseed Meal by Bacillus subtilis and the Addition of Papain. Sun, Hong,Feng, Jie,Tang, Jiang-Wu,Yao, Xiao-Hong,Wu, Yi-Fei,Wang, Xin. 2012

[13]The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Yu, Xianmei,Ai, Chengxiang,Xin, Li,Zhou, Guangfang. 2011

[14]Purification and characterization of a xylanase from Bacillus subtilis isolated from the degumming line. Guo, Gang,Liu, Zhengchu,Xu, Junfei,Feng, Xiangyuan,Duan, Shengwen,Zheng, Ke,Cheng, Lifeng,Liu, Jianping,Dai, Xiaoyang,Xie, Daping,Peng, Keqing.

[15]Identification and characterization of Bacillus subtilis from grass carp (Ctenopharynodon idellus) for use as probiotic additives in aquatic feed. Guo, Xia,Chen, Dan-Dan,Peng, Kai-Song,Cui, Zheng-Wei,Zhang, Xu-Jie,Li, Shun,Zhang, Yong-An,Guo, Xia,Peng, Kai-Song,Cui, Zheng-Wei,Zhang, Xu-Jie.

[16]Biocontrol potential of antagonist Bacillus subtilis Tpb55 against tobacco black shank. Han, T.,You, C.,Feng, C.,Zhang, C.,Wang, J.,Kong, F.,Zhang, L..

[17]Identification and characterization of a Bacillus subtilis strain HB-1 isolated from Yandou, a fermented soybean food in China. Qin, Huibin,Yang, Hongjiang,Gao, Songsong,Liu, Zheng,Qin, Huibin,Qiao, Zhijun. 2013

[18]Efficient secretory production of CotA-laccase and its application in the decolorization and detoxification of industrial textile wastewater. Guan, Zheng-Bing,Song, Chen-Meng,Zhang, Ning,Cai, Yu-Jie,Liao, Xiang-Ru,Shui, Yan.

[19]Enhanced production of a thermostable mannanase by immobilized cells of Bacillus subtilis on various membranes. Wu, Aimin,Jiang, Zhengqiang,Tang, Luo,Yan, Qiaojuan,Bo, Shi.

[20]Effects of long-term Bacillus subtilis CGMCC 1.921 supplementation on performance, egg quality, and fecal and cecal microbiota of laying hens. Guo, J. R.,Dong, X. F.,Liu, S.,Tong, J. M..

作者其他论文 更多>>