A comparative cell wall proteomic analysis of cucumber leaves under Sphaerotheca fuliginea stress

文献类型: 外文期刊

第一作者: Meng, Xiangnan

作者: Meng, Xiangnan;Fan, Haiyan;Yu, Yang;Cui, Na;Song, Tiefeng;Zhao, Juyong;Fan, Haiyan;Meng, Kexin

作者机构:

关键词: Cell wall proteins (CWPs);Cucumis sativus;Powdery mildew;Glucose-6-phosphate dehydrogenase (G6PDH);Label-free quantitative proteomics approach;RT-PCR

期刊名称:ACTA PHYSIOLOGIAE PLANTARUM ( 影响因子:2.354; 五年影响因子:2.711 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Powdery mildew, caused by Sphaerotheca fuliginea (S. fuliginea), is the most devastating disease that hampers cucumber plants cultivation and productivity. Cell wall proteins (CWPs) play a crucial role in response to biotic stress as a frontline defense of plants. In this work, we present a comparative cell wall proteomic approach to explore differentially expressed proteins in both highly resistant and highly susceptible cucumber leaves after 24 h of exposure to S. fuliginea. After extraction conducted by a destructive procedure with salts, glucose-6-phosphate dehydrogenase (G6PDH) activity and SDS-PAGE assessments were performed to determine the cytosolic contamination. Label-free quantitative proteomics approach was used to gain a comprehensive understanding of differentially regulated CWPs between the two lines after S. fuliginea inoculation. Among more than 200 proteins identified, 71 were significantly altered between the two lines. Most of these identified proteins were predicted to be CWPs except some classical cytosolic proteins. These differentially expressed CWPs belonged to different functional categories including defense, metabolism, redox regulation and cell wall arrangement. The expression levels of seven proteins selected were determined using RT-PCR. We found that resistant cucumber line is believed to start a series of disease-resistant mechanisms against pathogen. This study provides useful information on cell wall proteomic changes between a resistant and a susceptible genotype under infected conditions.

分类号: Q94

  • 相关文献

[1]Proteome-level investigation of Cucumis sativus-derived resistance to Sphaerotheca fuliginea. Fan, Haiyan,Ren, Liping,Meng, Xiangnan,Yu, Yang,Fan, Haiyan,Song, Tiefeng,Meng, Kexin.

[2]Distribution of Baseline Sensitivities to Natural Product Physcion Among Isolates of Sphaerotheca fuliginea and Pseudoperonospora cubensis. Yang, X. J.,Ni, H.,Yang, X. J.,Yang, L. J.,Zeng, F. S.,Xiang, L. B.,Wang, S. N.,Yu, D. Z..

[3]Short- and long-term effects of ultra-drying on germination and growth of vegetable seeds. Shen, D,Qi, XQ. 1998

[4]The expression patterns of Cucumis sativus WRKY (CsWRKY) family under the condition of inoculation with Phytophthora melonis in disease resistant and susceptible cucumber cultivars. Xu, Xiaomei,Wang, Rui,Chao, Juan,Lin, Yu'e,Jin, Qingmin,He, Xiaoming,Luo, Shaobo,Wu, Tingquan,Xu, Xiaomei,Wang, Rui,Chao, Juan,Lin, Yu'e,Jin, Qingmin,He, Xiaoming,Luo, Shaobo,Wu, Tingquan. 2015

[5]beta-tubulin accumulation and DNA synthesis are sequentially resumed in embryo organs of cucumber (Cucumis sativus L.) seeds during germination. Jing, HC,van Lammeren, AAM,de Castro, RD,Bino, RJ,Hilhorst, HWM,Groot, SPC. 1999

[6]Inheritance and QTL mapping of resistance to gummy stem blight in cucumber stem. Zhang, Shengping,Liu, Shulin,Miao, Han,Shi, Yanxia,Wang, Min,Wang, Ye,Li, Baoju,Gu, Xingfang.

[7]Allelopathic effects of Hemistepta lyrata on the germination and growth of wheat, sorghum, cucumber, rape, and radish seeds. Gao, Xingxiang,Li, Mei,Gao, Zongjun,Li, Changsong,Sun, Zuowen.

[8]Impact of arbuscular mycorrhizal fungi (AMF) on cucumber growth and phosphorus uptake under cold stress. Ma, Jun,Zou, Zhirong,Ma, Jun,Li, Yansu,Yu, Xianchang,Yan, Yan,He, Chaoxing,Janouskova, Martina.

[9]Brassinosteroids are involved in response of cucumber (Cucumis sativus) to iron deficiency. Wang, Baolan,Zhang, Wen-Hao,Li, Yansu. 2012

[10]Glutathione-dependent induction of local and systemic defense against oxidative stress by exogenous melatonin in cucumber (Cucumis sativus L.). Li, Hao,He, Jie,Yang, Xiaozhen,Luo, Dan,Wei, Chunhua,Ma, Jianxiang,Zhang, Yong,Yang, Jianqiang,Zhang, Xian,Li, Xin. 2016

[11]A 1,681-locus consensus genetic map of cultivated cucumber including 67 NB-LRR resistance gene homolog and ten gene loci. Yang, Luming,Li, Dawei,Li, Yuhong,Weng, Yiqun,Li, Dawei,Li, Yuhong,Gu, Xingfang,Huang, Sanwen,Garcia-Mas, Jordi,Weng, Yiqun. 2013

[12]Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber (Cucumis sativus L.) seedlings. Dong, Chun-Juan,Li, Liang,Shang, Qing-Mao,Liu, Xin-Yan,Zhang, Zhi-Gang.

[13]Genetic Mapping of the Scab Resistance Gene in Cucumber. Zhang, Shengping,Miao, Han,Gu, Xing-fang,Yang, Yuhong,Xie, Bingyan,Wang, Xiaowu,Huang, Sanwen,Du, Yongchen,Sun, Rifei,Wehner, Todd C.. 2010

[14]Responses of miRNAs and their target genes to nitrogen- or phosphorus-deficiency in grafted cucumber seedlings. Li, Chaohan,Yu, Xianchang,Bai, Longqiang,He, Chaoxing,Li, Yansu,Li, Chaohan.

[15]Cucumis sativus L-type lectin receptor kinase (CsLecRK) gene family response to Phytophthora melonis, Phytophthora capsici and water immersion in disease resistant and susceptible cucumber cultivars. Wu, Tingquan,Wang, Rui,Xu, Xiaomei,He, Xiaoming,Sun, Baojuan,Zhong, Yujuan,Liang, Zhaojuan,Luo, Shaobo,Lin, Yu'e,Wu, Tingquan,Wang, Rui,Xu, Xiaomei,He, Xiaoming,Sun, Baojuan,Zhong, Yujuan,Liang, Zhaojuan,Luo, Shaobo.

[16]An ACCUMULATION AND REPLICATION OF CHLOROPLASTS 5 gene mutation confers light green peel in cucumber. Wang, Shenhao,Hu, Bowen,Zhang, Zhonghua,Huang, Sanwen,Zhou, Qian,Huang, Sanwen,Chen, Huiming. 2015

[17]Comparative proteomic analysis of cucumber roots infected by Fusarium oxysporum f. sp cucumerium Owen. Zhang, Di,Hao, Yu Han,Fan, Hai Yan,Cui, Na,Wang, Shan Shan,Fan, Hai Yan,Meng, Ke Xin,Song, Tie Feng.

[18]Genetic variability in Grapevine virus A from Vitis vinifera L. x Vitis labrusca L. in Sichuan, China. Xi, Dehui,Yuan, Shu,Lin, Honghui,Wang, Jianhui,Chen, Keling,Li, Hongwen,Liu, Xiao,Wang, Jianhui,Liu, Jianjun,Chen, Keling,Li, Hongwen,Liu, Xiao,Liu, Jianjun,Ercisli, Sezai. 2012

[19]Rapid detection of porcine kobuvirus in feces by reverse transcription loop-mediated isothermal amplification. Li, Changlong,Chen, Jianfei,Shi, Hongyan,Zhang, Xin,Shi, Da,Han, Xiao,Feng, Li,Chi, Yanbin. 2014

[20]LMOf2365_0442 Encoding for a Fructose Specific PTS Permease IIA May Be Required for Virulence in L-monocytogenes Strain F2365. Liu, Yanhong,Yoo, Brian B.,Hwang, Cheng-An,Huang, Lihan,Suo, Yujuan,Sheen, Shiowshuh,Khosravi, Parvaneh. 2017

作者其他论文 更多>>