Supramolecular imprinted electrochemical sensor for the neonicotinoid insecticide imidacloprid based on double amplification by Pt-In catalytic nanoparticles and a Bromophenol blue doped molecularly imprinted film

文献类型: 外文期刊

第一作者: Li, Shuhuai

作者: Li, Shuhuai;Liu, Chunhua;Yin, Guihao;Luo, Jinhui;Zhang, Zhenshan;Li, Shuhuai;Liu, Chunhua;Yin, Guihao;Luo, Jinhui;Zhang, Zhenshan;Xie, Yixian

作者机构:

关键词: Supramolecular imprint;Nanocomposite Catalytic amplification;2-aminophenol;Electropolymerization;Scanning electronmicroscopy;XPS;Cyclic voltammetry;Vegetables

期刊名称:MICROCHIMICA ACTA ( 影响因子:5.833; 五年影响因子:5.357 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The authors describe an electrochemical sensor for the neonicotinoid insecticide imidacloprid (IMI) based on Pt-In catalytic nanocomposite film and Bromophenol blue amplification. The Pt-In nanocomposite film was deposited on the surface of a modified glassy carbon electrode. The composite molecularly imprinted polymer (MIP) was prepared by electro-polymerization using bromophenol blue doped o-aminophenol as functional monomer and 4-tert-butylcalix[6]arene-IMI supramolecular inclusion complex as template molecule. The experimental results showed that the current intensity of IMI was clearly amplified in the potential range from -0.3 to -1.8 V, because of the double amplification, based on the Pt-In film and Bromophenol blue catalysis. Moreover, the double recognition ability of the sensor, which relied on the MIP and the vacuum structure of 4-tert-butylcalix[6]arene, effectively increased the specific recognition performance. The feasibility of its practical applications has been demonstrated by the analysis of vegetable samples.

分类号: O65`O655

  • 相关文献

[1]Amperometric nitrite sensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and poly(toluidine blue). Dai, Juan,Deng, Dongli,Zhang, Jinzhong,Deng, Fei,He, Shuang,Deng, Dongli,Yuan, Yali,Zhang, Jinzhong.

[2]Surface characterization of ginger powder examined by X-ray photoelectron spectroscopy and scanning electron microscopy. Zhao, Xiaoyan,Du, Fangling,Zhu, Junqing,Ao, Qiang,Liu, Jie.

[3]An ultrasensitive amperometric immunosensor for zearalenones based on oriented antibody immobilization on a glassy carbon electrode modified with MWCNTs and AuPt nanoparticles. Liu, Na,Tan, Yanglan,Wang, Hui,Wu, Aibo,Nie, Dongxia,Zhao, Zhiyong,Liao, Yucai,Sun, Changpo.

[4]Label free electrochemical aptasensor for ultrasensitive detection of ractopamine. Wang, Peilong,Wang, Ruiguo,Su, Xiaoou,Yang, Fei,Shi, Lei,Zhou, Ying,He, Yujian,Yao, Dongsheng.

[5]An electrochemiluminescence aptasensor switch for aldicarb recognition via ruthenium complex-modified dendrimers on multiwalled carbon nanotubes. Li, Shuhuai,Liu, Chunhua,Han, Bingjun,Luo, Jinhui,Yin, Guihao,Li, Shuhuai,Liu, Chunhua,Han, Bingjun,Luo, Jinhui,Yin, Guihao. 2017

[6]Effects of the Fe-II/Cu-II Interaction on Copper Aging Enhancement and Pentachlorophenol Reductive Transformation in Paddy Soil. Wang, Yong-kui,Tao, Liang,Chen, Man-jia,Li, Fang-bai,Wang, Yong-kui,Chen, Man-jia,Wang, Yong-kui,Chen, Man-jia. 2012

[7]Reductive transformation of 2-nitrophenol by Fe(II) species in gamma-aluminum oxide suspension. Tao, Liang,Li, Fangbai,Sun, Kewen,Tao, Liang,Sun, Kewen,Feng, Chunhua,Tao, Liang,Sun, Kewen. 2009

[8]Electrochemical evidence of Fe(II)/Cu(II) interaction on titanium oxide for 2-nitrophenol reductive transformation. Tao, Liang,Li, Fangbai. 2012

[9]Environmental pH and ionic strength influence the electron-transfer capacity of dissolved organic matter. Lu, Qin,Yuan, Yong,Tao, Ya,Tang, Jia. 2015

[10]REDUCTIVE ACTIVITY OF ADSORBED Fe(II) ON IRON (OXYHYDR)OXIDES FOR 2-NITROPHENOL TRANSFORMATION. Tao, Liang,Li, Fangbai,Wang, Yongkui,Tao, Liang,Wang, Yongkui,Sun, Kewen.

[11]The vegetable cultivation system in two villages in Sichuan Province, China. Chen Yibing,Zhang Jianhua,Everaarts, Arij. 2007

[12]Effectiveness of 1,3-dichloropropene as an alternative to methyl bromide in rotations of tomato (Solanum lycopersicum) and cucumber (Cucumis sativus) in China. Qiao, Kang,Dong, Sa,Xia, Xiaoming,Wang, Kaiyun,Wang, Hongyan,Ji, Xiaoxue. 2012

[13]Soil threshold values of total and available cadmium for vegetable growing based on field data in Guangdong province, South China. Sun, Fang Fang,Wang, Fu Hua,Wang, Xu,He, Wu,Wen, Dian,Wang, Qi Feng,Liu, Xiang Xiang,Sun, Fang Fang,Wang, Fu Hua,Wang, Xu,He, Wu,Wen, Dian,Wang, Qi Feng,Liu, Xiang Xiang. 2013

[14]Diversity of Sicilian broccoli (Brassica oleracea var. italica) and cauliflower (Brassica oleracea var. botrytis) landraces and their distinctive bio-morphological, antioxidant, and genetic traits. Branca, Ferdinando,Chiarenza, Giuseppina Laura,Cavallaro, Chiara,Tribulato, Alessandro,Gu, Honghui,Zhao, Zhenqing. 2018

[15]History and status of the vegetable industry in China. Qu, DY. 2003

[16]Application of on-line dialysis in the determination of nitrite and nitrate in vegetables by ion chromatography. Xu Xia,Ying Xing-Hua,Duan Bin-Wu,Chen Neng. 2007

[17]The Effects of the Vegetable Prices Insurance on the Fluctuation of Price: Based on Shanghai Evidences. Qu, Chunhong,Li, Huishang,Zhang, Xuebiao,Yang, Wei,Hao, Shuai. 2017

[18]Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review. Zhang, Baohua,Huang, Wenqian,Li, Jiangbo,Zhao, Chunjiang,Fan, Shuxiang,Wu, Jitao,Zhang, Baohua,Zhao, Chunjiang,Liu, Chengliang. 2014

[19]Present situation and future development for protected horticulture in mainland China. Jiang, W. J.,Yu, H. J.. 2008

[20]Characterization of Free, Conjugated, and Bound Phenolic Acids in Seven Commonly Consumed Vegetables. Gao, Yuan,Ma, Shuai,Wang, Meng,Feng, Xiao-Yuan,Gao, Yuan,Ma, Shuai,Wang, Meng,Feng, Xiao-Yuan. 2017

作者其他论文 更多>>