Comparative transcriptome profiling of chilling stress responsiveness in grafted watermelon seedlings

文献类型: 外文期刊

第一作者: Xu, Jinhua

作者: Xu, Jinhua;Hou, Xilin;Xu, Jinhua;Zhang, Man;Liu, Guang;Yang, Xingping

作者机构:

关键词: Watermelon;Rootstock grafting;Differentially-expressed gene (DEG);Chilling stress

期刊名称:PLANT PHYSIOLOGY AND BIOCHEMISTRY ( 影响因子:4.27; 五年影响因子:4.816 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Rootstock grafting may improve the resistance of watermelon plants to low temperatures. However, information regarding the molecular responses of rootstock grafted plants to chilling stress is limited. To elucidate the molecular mechanisms of chilling tolerance in grafted plants, the transcriptomic responses of grafted watermelon under chilling stress were analyzed using RNA-seq analysis. Sequencing data were used for digital gene expression (DGE) analysis to characterize the transcriptomic responses in grafted watermelon seedlings. A total of 702 differentially-expressed genes (DEGs) were found in rootstock grafted (RG) watermelon relative to self-grafted (SG) watermelon; among these genes, 522 genes were up-regulated and 180 were down-regulated. Additionally, 164 and 953 genes were found to specifically expressed in RG and SG seedlings under chilling stress, respectively. Functional annotations revealed that up-regulated DEGs are involved in protein processing, plant-pathogen interaction and the spliceosome, whereas down-regulated DEGs are associated with photosynthesis. Moreover, 13 DEGs were randomly selected for quantitative real time PCR (qRT-PCR) analysis. The expression profiles of these 13 DEGs were consistent with those detected by the DGE analysis, supporting the reliability of the DGE data. This work provides additional insight into the molecular basis of grafted watermelon responses to chilling stress. (C) 2016 Published by Elsevier Masson SAS.

分类号: Q945`Q946

  • 相关文献

[1]Overexpression of a tomato flavanone 3-hydroxylase-like protein gene improves chilling tolerance in tobacco. Zhang, Song,Wang, Guo-Dong,Kong, Fan-Ying,Meng, Chen,Deng, Yong-Sheng.

[2]Responses of Antioxidant Enzymes to Chilling Stress in Tobacco Seedlings. Xu Sheng-chun,Hu Jin,Guan Ya-jing,Zhu Shui-jin,Li Yong-ping,Ma Wen-guang,Zheng Yun-ye,Xu Sheng-chun. 2010

[3]Effects of Low Temperature Stress on Spikelet-Related Parameters during Anthesis in Indica-Japonica Hybrid Rice. Zeng, Yanhua,Pan, Xiaohua,Zeng, Yanhua,Zhang, Yuping,Xiang, Jing,Zhu, Defeng,Uphoff, Norman T.. 2017

[4]Effects of chilling tolerance induced by spermidine pretreatment on antioxidative activity, endogenous hormones and ultrastructure of indica-japonica hybrid rice seedlings. Zeng Yan-hua,Zhu De-feng,Zeng Yan-hua,Zahng Yu-ping,Xiang Jing,Wu Hui,Chen Hui-zhe,Zhang Yi-kai,Zhu De-feng.

[5]Effects of chilling stress on protein and related gene expression in chloroplasts of sugarcane. Li, Yang-Rui,Huang, Qiao-Ling,Huang, Xing,Sun, Fu,Sun, Bo,Yang, Li-Tao,Li, Yang-Rui.

[6]Effects of heat treatment on internal browning and membrane fatty acid in loquat fruit in response to chilling stress. Rui, Huaijing,Shang, Haitao,Jin, Peng,Wang, Kaituo,Zheng, Yonghua,Cao, Shifeng.

[7]DEFICIENCY OF PHYTOCHROME B ALLEVIATES CHILLING-INDUCED PHOTOINHIBITION IN RICE. Yang, Jian-Chao,Han, Guo-Liang,Sui, Na,Wang, Bao-Shan,Li, Meng,Xie, Xian-Zhi. 2013

[8]Damaging mechanisms of chilling- and salt stress to Arachis hypogaea L. leaves. Qin, L. -Q.,Zhang, Y. -L.,Wan, S. -B.,Meng, J. -J.,Li, X. -G.,Qin, L. -Q.,Zhang, Y. -L.,Wan, S. -B.,Meng, J. -J.,Li, X. -G.,Qin, L. -Q.,Zhang, Y. -L.,Wan, S. -B.,Meng, J. -J.,Li, X. -G.,Qin, L. -Q.,Li, L.,Meng, Q. -W.,Bi, C..

[9]Seed Priming Alters the Production and Detoxification of Reactive Oxygen Intermediates in Rice Seedlings Grown under Sub-optimal Temperature and Nutrient Supply. Hussain, Saddam,Khan, Fahad,Wu, Lishu,Geng, Mingjian,Cao, Weidong. 2016

[10]Enhanced Tolerance to Chilling Stress in Tomato by Overexpression of a Mitogen-Activated Protein Kinase, SlMPK7. Yu, Li,Yan, Jun,He, Lizhong,Zhu, Weimin,Yang, Yanjuan.

[11]Calcium influence on chilling resistance of grafting eggplant seedlings. Gao, HB,Chen, GL,Han, LH,Lin, HA. 2004

[12]Variation of photosynthetic tolerance of rice cultivars (Oryza sativa L.) to chilling temperature in the light. Li, Xia,Cao, Kun,Wang, Chao,Sun, Zhi-wei,Yan, Lina. 2010

[13]Exogenous Application of Plant Growth Regulators Induce Chilling Tolerance in Direct Seeded Super and Non-super Rice Seedlings through Modulations in Morpho-physiological Attributes. Mo, Z. W.,Ashraf, U.,Pan, S. G.,Kanu, A. S.,Duan, M. Y.,Tian, H.,Tang, X. R.,Mo, Z. W.,Ashraf, U.,Pan, S. G.,Kanu, A. S.,Duan, M. Y.,Tian, H.,Tang, X. R.,Li, W..

[14]Comparative transcriptome profiling of Pyropia yezoensis (Ueda) MS Hwang & HG Choi in response to temperature stresses. Sun, Peipei,Mao, Yunxiang,Cao, Min,Kong, Fanna,Bi, Guiqi,Li, Guiyang,Wang, Li. 2015

[15]Changes in membrane-associated H+-ATPase activities and amounts in young grape plants during the cross adaptation to temperature stresses. Zhang, JH,Liu, YP,Pan, QH,Zhan, JC,Wang, XQ,Huang, WD.

[16]Effects of Calcium and Calmodulin Antagonists on Chilling Stress-Induced Proline Accumulation in Jatropha curcas L.. Yang, Shuang-Long,Deng, Feng-Fei,Gong, Ming,Lan, Shan-Shan.

[17]Size effects of chitooligomers with certain degrees of polymerization on the chilling tolerance of wheat seedlings. Zou, Ping,Tian, Xueying,Dong, Bing,Zhang, Chengsheng.

[18]Temperature-dependent autoimmunity mediated by chs1 requires its neighboring TNL gene SOC3. Zhang, Yao,Wang, Yuancong,Liu, Jingyan,Ding, Yanglin,Zhang, Xiaoyan,Yang, Shuhua,Wang, Yuancong,Wang, Shanshan,Liu, Yule,Wang, Shanshan,Liu, Yule.

[19]Inheritance of male-sterility and dwarfism in watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai]. Huang, HX,Zhang, XQ,Wei, ZC,Li, QH,Li, X. 1998

[20]Watermelon Lycopene Content Correlation with Flesh Colour and Genetic Research. Zhang, Fan,He, Hongju,Xu, Yong. 2010

作者其他论文 更多>>