Heterologous production of an acidic thermostable lipase with broad-range pH activity from thermophilic fungus Neosartorya fischeri P1

文献类型: 外文期刊

第一作者: Sun, Qiaoqiao

作者: Sun, Qiaoqiao;Wang, Hui;Luo, Huiying;Shi, Pengjun;Bai, Yingguo;Yao, Bin;Huang, Huoqing;Sun, Qiaoqiao;Zhang, Huitu;Lu, Fuping

作者机构:

关键词: Lipase;Broad pH adaptability;Thermophilic fungus;Pichia pastoris;Neosartorya fischeri

期刊名称:JOURNAL OF BIOSCIENCE AND BIOENGINEERING ( 影响因子:2.894; 五年影响因子:2.746 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Thermophilic Neosartorya fischeri P1 is an excellent lipase producer and harbors seven lipase genes. All genes were found to be functional after heterologous expression in Escherichia coli. One of them, LIP09, showed high-level expression in Pichia pastoris with the yield of 2.0 g/L in a 3.7-L fermentor. Deduced amino acid sequence of LIP09 consists of a putative signal peptide (residues 1-19) and a mature polypeptide (residues 20-562). Compared with other fungal counterparts, purified recombinant LIP09 has some superior properties. It exhibited maximum activity at 60 degrees C and pH 5.0, had broad pH adaptability (>60% activity at pH 3.5-8.0) and stability (retaining >90% activity after incubation at pH 3.0-7.0 for 1 hat 40 degrees C), and was highly thermostable (retaining >96% activity after incubation at 50 degrees C for 30 min). The r-LIP09 had a preference for the medium-chain length p-nitrophenyl esters (C12) rather than short and long-chain length substrates. The high-level expression and excellent properties make LIP09 a potential enzyme candidate in food and feed industries. (C) 2016, The Society for Biotechnology, Japan. All rights reserved.

分类号: Q5`Q81`TS26

  • 相关文献

[1]A thermophilic beta-mannanase from Neosartorya fischeri P1 with broad pH stability and significant hydrolysis ability of various mannan polymers. Yang, Hong,Shi, Pengjun,Lu, Haiqiang,Wang, Huimin,Luo, Huiying,Huang, Huoging,Yang, Peilong,Yao, Bin.

[2]Isolation of a Novel Lipase Gene from Serratia liquefaciens S33 DB-1, Functional Expression in Pichia pastoris and its Properties. Yao, Hongyan,Yu, Shunwu,Zuo, Kaijing,Ling, Hua,Zhang, Fei,Tang, Kexuan,Yu, Shunwu.

[3]High-level expression and biochemical characterization of a novel cold-active lipase from Rhizomucor endophyticus. Duan, Xiaojie,Liu, Yu,Jiang, Zhengqiang,Yang, Shaoqing,Zheng, Mingming.

[4]Loop 3 of Fungal Endoglucanases of Glycoside Hydrolase Family 12 Modulates Catalytic Efficiency. Yang, Hong,Shi, Pengjun,Liu, Yun,Xia, Wei,Wang, Xiaoyu,Cao, Huifang,Ma, Rui,Luo, Huiying,Bai, Yingguo,Yao, Bin,Liu, Yun,Wang, Xiaoyu.

[5]Revisiting overexpression of a heterologous beta-glucosidase in Trichoderma reesei: fusion expression of the Neosartorya fischeri Bgl3A to cbh1 enhances the overall as well as individual cellulase activities. Xue, Xianli,Ma, Rui,Luo, Huiying,Su, Xiaoyun,Yao, Bin,Wu, Yilan,Qin, Xing. 2016

[6]Two thermophilic fungal pectinases from Neosartorya fischeri P1: Gene cloning, expression, and biochemical characterization. Li, Ke,Meng, Kun,Pan, Xia,Ma, Rui,Yang, Peilong,Huang, Huoqing,Yao, Bin,Su, Xiaoyun.

[7]A thermophilic alpha-galactosidase from Neosartorya fischeri P1 with high specific activity, broad substrate specificity and significant hydrolysis ability of soymilk. Wang, Huimin,Shi, Pengjun,Luo, Huiying,Huang, Huoqing,Yang, Peilong,Yao, Bin. 2014

[8]Effects of DIMBOA on several enzymatic systems in Asian corn borer, Ostrinia furnacalis (Guenee). Yan, FM,Xu, CG,Li, SG,Lin, CS,Li, JH. 1995

[9]Isolation and biochemical characterization of two lipases from a metagenomic library of China Holstein cow rumen. Liu, Kailang,Wang, Jiaqi,Bu, Dengpan,Zhao, Shengguo,Yu, Ping,Li, Dan,McSweeney, Chris. 2009

[10]Progress of Lipase-Catalyzed Ester Synthesis in Ionic Liquid. Li Jing,Wang Jun,Zhang Leixia,Gu Shuangshuang,Wu Fuan,Guo Yuewei,Wu Fuan,Guo Yuewei. 2012

[11]A novel chemoenzymatic synthesis of propyl caffeate using lipase-catalyzed transesterification in ionic liquid. Pang, Na,Gu, Shuang-Shuang,Wang, Jun,Cui, Hong-Sheng,Wang, Fang-Qin,Liu, Xi,Zhao, Xing-Yu,Wu, Fu-An,Wu, Fu-An.

[12]Pretreating porcine sperm with lipase enhances developmental competence of embryos produced by intracytoplasmic sperm injection. Wei, Yinghui,Fan, Junhua,Li, Lin,Liu, Zhiguo,Li, Kui.

[13]A novel proteolysis-resistant lipase from keratinolytic Streptomyces fradiae var. k11. Zhang, Yuhong,Meng, Kun,Wang, Yaru,Luo, Huiying,Yang, Peilong,Shi, Pengjun,Yao, Bin,Wu, Ningfeng,Fan, Yunhu,Li, Jiang.

[14]Synthesis and Characterization of Magnetic Nanoparticles and Its Application in Lipase Immobilization. Xu, Jiakun,Ju, Caixia,Sheng, Jun,Wang, Fang,Zhang, Quan,Sun, Guolong,Sun, Mi,Xu, Jiakun,Ju, Caixia,Zhang, Quan,Sun, Guolong. 2013

[15]Lipase-catalyzed Synthesis of Caffeic Acid Phenethyl Ester in Ionic Liquids: Effect of Specific Ions and Reaction Parameters. Wang Jun,Li Jing,Zhang Leixia,Gu Shuangshuang,Wu Fuan,Wu Fuan. 2013

[16]Lipase-Catalyzed Acyl-L-Carnitines Synthesis in [Bmim]PF6 Ionic Liquid. Tian, Jin-qiang,Wang, Qiang. 2009

[17]Lipase-catalyzed acylation of l-carnitine with conjugated linoleic acid in [Bmim]PF6 ionic liquid. Tian, Jinqiang,Wang, Qiang,Tian, Jinqiang,Wang, Qiang,Zhang, Zhongyuan. 2009

[18]Lipase Diversity in Glacier Soil Based on Analysis of Metagenomic DNA Fragments and Cell Culture. Zhang Yuhong,Shi, Pengjun,Meng, Kun,Bai, Yingguo,Wang, Guozeng,Yao, Bin,Zhang Yuhong,Liu, Wanli,Zhan, Zhichun.

[19]Ultrasound irradiation accelerates the lipase-catalyzed synthesis of methyl caffeate in an ionic liquid. Wang, Jun,Wang, Shasha,Li, Zhongjian,Gu, Shuangshuang,Wu, Fuan,Wang, Jun,Wang, Shasha,Li, Zhongjian,Gu, Shuangshuang,Wu, Fuan,Wang, Jun,Wu, Xiangyang.

[20]From microalgae oil to produce novel structured triacylglycerols enriched with unsaturated fatty acids. Wang, Jun,Wang, Xu-Dong,Zhao, Xing-Yu,Liu, Xi,Wu, Fu-An,Wang, Jun,Wu, Fu-An,Dong, Tao.

作者其他论文 更多>>