Identification of genes in longissimus dorsi muscle differentially expressed between Wannanhua and Yorkshire pigs using RNA-sequencing

文献类型: 外文期刊

第一作者: Li, X. -J.

作者: Li, X. -J.;Liu, L. -Q.;Qian, K.;Wang, C. -L.;Li, X. -J.;Zhou, J.

作者机构:

关键词: candidate genes;Chinese indigenous pig breed;meat quality;molecular mechanism

期刊名称:ANIMAL GENETICS ( 影响因子:3.169; 五年影响因子:3.058 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Western commercial pig breeds have been intensively selected, resulting in a sizeable, rapid and efficient accretion of muscle but a reduction in meat quality. When compared with Western commercial pig breeds, Chinese indigenous pig breeds exhibited slower growth rates and reduced lean meat content but superior perceived meat quality. To study the factors that determine meat quality, we examined piglets of one Western commercial breed (Yorkshire) and one Chinese indigenous breed (Wannanhua) and sequenced the longissimus dorsi muscle using RNA-sequencing (RNA-seq). We analyzed their transcriptomes, focusing on identifying candidate genes that may influence porcine muscle growth, meat quality and adipose deposition. Gene Ontology functional enrichment and pathway enrichment analyses identified differentially expressed genes (DEGs) primarily associated with glycolytic metabolism, biological processes of muscle development and signaling pathways related to fatty acid metabolism, growth and carcass traits. This finding suggests that the DEGs may play important roles in determining meat quality traits. Quantitative real-time reverse transcription polymerase chain reaction confirmed the differential expression of 12 selected DEG. This study identified a number of novel candidate genes for porcine meat quality and carcass traits that merit further investigation to elucidate the molecular mechanisms responsible for muscle growth and fat deposition.

分类号: Q953

  • 相关文献

[1]Differential Gene Expression Between Hybrids and Their Parents During the Four Crucial Stages of Cotton Growth and Development. Zhao Yun-lei,Yu Shu-xun,Xing Chao-zhu,Fan Shu-li,Song Mei-zhen,Ye Wu-wei. 2009

[2]Specific TonB-ExbB-ExbD energy transduction systems required for ferric enterobactin acquisition in Campylobacter. Zeng, Ximin,Xu, Fuzhou,Lin, Jun,Xu, Fuzhou. 2013

[3]Transcriptomic and proteomic analysis of Locusta migratoria eggs at different embryonic stages: Comparison for diapause and non-diapause regimes. Hao Kun,Wang Jie,Tu Xiong-bing,Zhang Ze-hua,Whitman, Douglas W.. 2017

[4]Transcriptome Sequencing Identified Genes and Gene Ontologies Associated with Early Freezing Tolerance in Maize. Li, Zhao,Hu, Guanghui,Liu, Xiangfeng,Zhou, Yao,Zhang, Qian,Yang, Deguang,Zhang, Zhiwu,Li, Zhao,Hu, Guanghui,Zhang, Xu,Yuan, Xiaohui,Zhang, Zhiwu,Hu, Guanghui,Wang, Tianyu,Yuan, Xiaohui. 2016

[5]PeaT1-induced systemic acquired resistance in tobacco follows salicylic acid-dependent pathway. Yang, Xiufen,Qiu, Dewen,Guo, Lihua,Zeng, Hongmei,Mao, Jianjun,Gao, Qiufeng.

[6]Molecular Mechanisms of Several Novel Dipeptides with Angiotensin-I-converting Enzyme Inhibitory Activity from In-silico Screening of Silkworm Pupae Protein. Wang, Wei,Zhang, Yu,Zhu, Zuoyi,Wang, Nan.

[7]Comparative transcriptomic analysis of resistant and susceptible alfalfa cultivars (Medicago sativa L.) after thrips infestation. Zhang, Zehua,Liu, Zhongkuan. 2018

[8]Transcriptomic analyses reveal molecular mechanisms underlying growth heterosis and weakness of rubber tree seedlings. Wei, Yongxuan,Chen, Jiangshu,Xia, Zhihui,Wang, Xuncheng,He, Guangming,Wang, Xuncheng,He, Guangming,Yang, Hong,Deng, Zhi,Liu, Hui,Dai, Longjun,Li, Dejun. 2018

[9]A review for the molecular research of russet/semi-russet of sand pear exocarp and their genetic characters. Wang, Yue-zhi,Dai, Mei-song,Cai, Dan-ying,Zhang, Shujun,Shi, Ze-bin.

[10]The MaASR gene as a crucial component in multiple drought stress response pathways in Arabidopsis. Zhang, Lili,Hu, Wei,Wang, Yuan,Feng, Renjun,Zhang, Yindong,Liu, Juhua,Jia, Caihong,Miao, Hongxia,Zhang, Jianbin,Xu, Biyu,Jin, Zhiqiang,Jin, Zhiqiang.

[11]luxS/AI-2 Quorum Sensing Is Involved in Antimicrobial Susceptibility in Streptococcus agalactiae. Ma, Yan Ping,Ke, Hao,Hao, Le,Liu, Zhen Xing,Liang, Zhi Ling,Ma, Jiang Yao,Ma, Yan Ping,Ke, Hao,Hao, Le,Liu, Zhen Xing,Liang, Zhi Ling,Ma, Jiang Yao,Yang, Hu Cheng,Li, Yu Gu.

[12]Analysis of differentially expressed genes in Oryza meyeriana in response to infection by Xanthomonas oryzae pv. oryzae. Cheng, Z.,Tang, K.,Yan, H.,Fu, J.,Ying, F.,Huang, X.,Tang, K.,Huang, X..

[13]Cloning and phylogenetic analysis of polyphenol oxidase genes in common wheat and related species. He, X. Y.,He, Z. H.,Xia, X. C.,He, Z. H.,Morris, C. F..

[14]Gibberellin-induced mesocotyl elongation in deep-sowing tolerant maize inbred line 3681-4. Zhao, G.,Ma, P.,Wu, L.,Wang, J.,Zhao, G.,Ma, P.,Wu, L.,Wang, J.,Zhao, G.,Fu, J.,Wang, G..

[15]Protein differential expression in the latex from Hevea brasiliensis between self-rooting juvenile clones and donor clones. Li, Hui-Liang,Guo, Dong,Lan, Fang-Ying,Peng, Shi-Qing,Tian, Wei-Min.

[16]Molecular mechanisms of novel peptides from silkworm pupae that inhibit alpha-glucosidase. Zhang, Yu,Wang, Wei,Wang, Junhong,Zhu, Zuoyi,Lia, Xue,Wang, Nan,Wang, Wei.

[17]QTL Mapping by Whole Genome Re-sequencing and Analysis of Candidate Genes for Nitrogen Use Efficiency in Rice. Xia, Xiuzhong,Zhang, Zongqiong,Nong, Baoxuan,Zeng, Yu,Deng, Guofu,Li, Danting,Xiong, Faqian,Wu, Yanyan,Gao, Ju. 2017

[18]Quantitative trait loci analysis and genome-wide comparison for silique related traits in Brassica napus. Wang, Xiaodong,Chen, Li,Chao, Hongbo,Li, Maoteng,Wang, Xiaodong,Chen, Li,Xiang, Jun,Gan, Jianping,Wang, Aina,Wang, Hao,Tian, Jianhua,Zhao, Xiaoping,Zhao, Yajun,Zhao, Weiguo. 2016

[19]Genome-Wide Association and Transcriptome Analyses Reveal Candidate Genes Underlying Yield-determining Traits in Brassica napus. Lu, Kun,Peng, Liu,Zhang, Chao,Lu, Junhua,Yang, Bo,Xiao, Zhongchun,Liang, Ying,Xu, Xingfu,Qu, Cunmin,Zhang, Kai,Liu, Liezhao,Li, Jiana,Peng, Liu,Zhang, Chao,Zhu, Qinlong,Fu, Minglian,Yuan, Xiaoyan. 2017

[20]Fine mapping and identification of candidate genes for a QTL affecting Meloidogyne incognita reproduction in Upland cotton. Kumar, Pawan,He, Yajun,Singh, Rippy,Shen, Xinlian,Chee, Peng W.,Davis, Richard F.,Guo, Hui,Paterson, Andrew H.,Peterson, Daniel G.,Nichols, Robert L.,Shen, Xinlian,He, Yajun. 2016

作者其他论文 更多>>