Bioassay and Scanning Electron Microscopic Observations Reveal High Virulence of Entomopathogenic Fungus, Beauveria bassiana, on the Onion Maggot (Diptera: Anthomyiidae) Adults

文献类型: 外文期刊

第一作者: Wu, Shengyong

作者: Wu, Shengyong;Xing, Zhenlong;Lei, Zhongren;Wang, Xiaoqing;Lei, Zhongren

作者机构:

关键词: Delia antiqua;Beauveria bassiana;laboratory bioassay;scanning electron microscope

期刊名称:JOURNAL OF ECONOMIC ENTOMOLOGY ( 影响因子:2.381; 五年影响因子:2.568 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: When flies were dipped in 1 x 10(8) conidia/ml conidia suspensions and then kept in the incubator (22 +/- 1 degrees C, 70 +/- 5% RH), scanning electron microscope observations revealed that, at 2 h, the majority of adhering Beauveria bassiana conidia were attached to either the wing surface or the interstitial area between the macrochaetae on the thorax and abdomen of the onion maggot adults. Germ tubes were being produced and had oriented toward the cuticle by 18 h. Penetration of the insect cuticle had occurred by 36 h, and by 48 h, germ tubes had completely penetrated the cuticle. Fungal mycelia had emerged from the insect body and were proliferating after 72 h. The superficial area and structure of the wings and macrochaetae may facilitate the attachment of conidia and enable effective penetration. The susceptibility of adults to 12 isolates, at a concentration of 1 x 10(7) conidia/ml, was tested in laboratory experiments. Eight of the more potent strains caused in excess of 85% adult mortality 8 d post inoculation, while the median lethal time (LT50) of these strains was < 6 d. The virulence of the more effective strains was further tested, and the median lethal concentrations (LC50) were calculated by exposing adults to doses ranging from 10(3) - 10(7) conidia/ml. The lowest LC50 value, found in the isolate XJWLMQ-32, for the adults was 3.87 x 10(3) conidia/ml. These results demonstrate that some B. bassiana strains are highly virulent to onion maggot adults and should be considered as potential biocontrol agents against the adult flies.

分类号: Q969.9

  • 相关文献

[1]Studies on the Characters and Microstructure of Enzyme and Octenyl Succinic Anhydride Modified Starch. Zheng Wei-wan,Tu Zong Cai,Lin Hong-hui,Kong Ling Wei,Wang Zhen Xing. 2010

[2]Optimization of Catechin Nanoliposomes and Evaluation of Their Antioxidant Activity and Cytotoxicity. Wu, Zhipan,Guan, Rongfa,Liu, Mingqi,Xiao, Chaogeng,Lyu, Fei,Cao, Guozhou,Gao, Jianguo. 2017

[3]XPS and SEM Spectroscopy Study of Hyperdispersant on Atrazine Surface. Xu Yan,Ma Chao,Zhang Ping,Cai Meng-ling,Wu Xue-min,Sun Bao-li. 2011

[4]In vitro Antimicrobial Activities and Mechanism of 1-Octen-3-ol against Food-related Bacteria and Pathogenic Fungi. Li, Qiang,Chen, Zuqin,Xiong, Chuan,Li, Qiang,Huang, Wenli,Li, Shuhong,Chen, Cheng. 2017

[5]Synthesis and properties study of carboxymethyl cassava starch. Qiu, HY,He, LM. 1999

[6]EFFECTS OF SILICON ON YIELD CONTRIBUTING PARAMETERS AND ITS ACCUMULATION IN ABAXIAL EPIDERMIS OF SUGARCANE LEAF BLADES USING ENERGY DISPERSIVE X-RAY ANALYSIS. Li, Yang-Rui,Dalvi, V. A.,Huang, Hai-Rong.

[7]Study on Biochar Properties Analysis with Scanning Electron Microscope-EnergyDispersive X-Ray Spectroscopy (SEM-EDX). Ma Xing-zhu,Hao Xiao-yu,Ma Xing-zhu,Hao Xiao-yu,Chen Xue-li,Gao Zhong-chao,Wei Dan,Zhou Bao-ku. 2016

[8]Cell Wall Disruption of Rape Bee Pollen Treated with Combination of Protamex Hydrolysis and Ultrasonication. Dong, Jie,Gao, Kun,Wang, Kai,Xu, Xiang,Zhang, Hongcheng,Wang, Kai,Dong, Jie,Xu, Xiang,Zhang, Hongcheng.

[9]Granule Size and Distribution of Raw and Germinated Oat Starch in Solid State and Ethanol Solution. Tian Binqiang,Tian Binqiang,Xie Bijun,Wang Chao,Wang Lan.

[10]RNA-Seq Analyses for Two Silkworm Strains Reveals Insight into Their Susceptibility and Resistance to Beauveria bassiana Infection. Xing, Dongxu,Jiang, Liang,Xia, Qingyou,Xing, Dongxu,Yang, Qiong,Li, Qingrong,Xiao, Yang,Ye, Mingqiang. 2017

[11]Potential of a strain of the entomopathogenic fungus Beauveria bassiana (Hypocreales: Cordycipitaceae) as a biological control agent against western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Gao, Yulin,Wang, Jing,Xu, Xuenong,Lei, Zhongren,Reitz, Stuart R.. 2012

[12]Entomopathogenicity of Three Muscardine Fungi, Beauveria bassiana, Isaria fumosorosea and Metarhizium anisopliae, against the Asian Citrus Psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Ma, Chun-Sen,Majeed, M. Z.,Fiaz, M.,Afzal, M.. 2017

[13]Effects of Bacillus thuringiensis toxin Cry1Ac and Beauveria bassiana on Asiatic corn borer (Lepidoptera : Crambidae). Ma, Xiao-Mu,Liu, Xiao-Xia,Ning, Xia,Zhang, Bo,Han, Fei,Guan, Xiu-Min,Zhang, Qing-Wen,Tan, Yun-Feng. 2008

[14]Inductive expression patterns of genes related to Toll signaling pathway in silkworm (Bombyx mori) upon Beauveria bassiana infection. Geng, Tao,Huang, Yuxia,Hou, Chengxiang,Qin, Guangxing,Lv, Dingding,Guo, Xijie,Hou, Chengxiang,Qin, Guangxing,Guo, Xijie. 2016

[15]Molecular cloning and characterization of High Mobility Group box (HMGB) gene from Beauveria bassiana- infected silkworm, Bombyx mori. Chengxiang, H.,Han, W.,Dingding, L.,Ruilin, L.,Xijie, G.,Chengxiang, H.,Han, W.,Dingding, L.,Ruilin, L.,Xijie, G.. 2017

[16]Field trials of an oil-based emulsifiable formulation of Beauveria bassiana conidia and low application rates of imidacloprid for control of false-eye leafhopper Empoasca vitis on tea in southern China. Feng, MG,Pu, XY,Ying, SH,Wang, YG. 2004

[17]Laboratory and greenhouse evaluation of a new entomopathogenic strain of Beauveria bassiana for control of the onion thrips Thrips tabaci. Gao, Yulin,Xu, Xuenong,Zhang, Yaping,Wang, Jing,Lei, Zhongren,Smagghe, Guy.

[18]Identification and characterization of an insect toxin protein, Bb70p, from the entomopathogenic fungus, Beauveria bassiana, using Galleria mellonella as a model system. Khan, Sehroon,Xu, Jianchu,Khan, Sehroon,Xu, Jianchu,Khan, Sehroon,Guo Lihua,Qiu Dewen,Nadir, Sadia,Nadir, Sadia,Holmes, Keith A..

[19]Bombyx mori cecropin A has a high antifungal activity to entomopathogenic fungus Beauveria bassiana. Lu, Dingding,Geng, Tao,Hou, Chengxiang,Huang, Yuxia,Qin, Guangxing,Guo, Xijie,Lu, Dingding,Geng, Tao,Hou, Chengxiang,Huang, Yuxia,Qin, Guangxing,Guo, Xijie,Lu, Dingding.

[20]Sublethal Effects of Beauveria bassiana (Ascomycota: Hypocreales) on Life Table Parameters of Frankliniella occidentalis (Thysanoptera: Thripidae). Wang, Haihong,Lei, Zhongren,Wang, Haihong.

作者其他论文 更多>>