Enhanced Performance of Magnetic Graphene Oxide-Immobilized Laccase and Its Application for the Decolorization of Dyes

文献类型: 外文期刊

第一作者: Chen, Jing

作者: Chen, Jing;Leng, Juan;Yang, Xiai;Liao, Liping;Liu, Liangliang;Xiao, Aiping

作者机构:

关键词: dyes;graphene oxide;laccase;magnetic nanoparticles

期刊名称:MOLECULES ( 影响因子:4.411; 五年影响因子:4.587 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: In this study, magnetic graphene oxide (MGO) nanomaterials were synthesized based on covalent binding of amino Fe3O4 nanoparticles onto the graphene oxide (GO), and the prepared MGO was successfully applied as support for the immobilization of laccase. The MGO-laccase was characterized by transmission electron microscopy (TEM) and a vibrating sample magnetometer (VSM). Compared with free laccase, the MGO-laccase exhibited better pH and thermal stabilities. The optimum pH and temperature were confirmed as pH 3.0 and 35 degrees C. Moreover, the MGO-laccase exhibited sufficient magnetic response and satisfied reusability after being retained by magnetic separation. The MGO-laccase maintained 59.8% activity after ten uses. MGO-laccase were finally utilized in the decolorization of dye solutions and the decolorization rate of crystal violet (CV), malachite green (MG), and brilliant green (BG) reached 94.7% of CV, 95.6% of MG, and 91.4% of BG respectively. The experimental results indicated the MGO-laccase nanomaterials had a good catalysis ability to decolorize dyes in aqueous solution. Compared with the free enzyme, the employment of MGO as enzyme immobilization support could efficiently enhance the availability and facilitate the application of laccase.

分类号: O62

  • 相关文献

[1]Simultaneous Extraction, Enrichment and Removal of Dyes from Aqueous Solutions Using a Magnetic Aqueous Micellar Two-Phase System. Wu, Shuanggen,Sun, Danyu,Li, Fenfang,Wang, Chaoyun,Yang, Yuanru,Tan, Zhijian,Wang, Chaoyun,Yang, Yuanru,Tan, Zhijian. 2017

[2]Preparation of Tetraethylenepentamine Modified Magnetic Graphene Oxide for Adsorption of Dyes from Aqueous Solution. Tang, Xiaosheng,Tang, Xiaosheng,Tang, Xiaosheng,Tang, Ping,Liu, Liangliang,Tang, Ping. 2018

[3]Adsorption and removal of bisphenol A from aqueous solution by p-phenylenediamine-modified magnetic graphene oxide. Tang, Xiaosheng,Tang, Xiaosheng,Tang, Ping,Liu, Liangliang,Tang, Ping,Si, Shihui. 2017

[4]Study on the cationic modification and dyeing of ramie fiber. Liu, Zhao-Tie,Yang, Yani,Zhang, Lili,Liu, Zhong-Wen,Xiong, Heping.

[5]Rapid Screening and Identification of BSA Bound Ligands from Radix astragali Using BSA Immobilized Magnetic Nanoparticles Coupled with HPLC-MS. Liu, Liangliang,Leng, Juan,Yang, Xiai,Liao, Liping,Xiao, Aiping,Ma, Lei,Cen, Yin.

[6]Magnetically triggered drug release from nanoparticles and its applications in anti-tumor treatment. Hua, Xin,Yang, Qin,Zhang, Wanjiang,Wang, Qiudong,Dong, Zhimin,Zhang, Jiashuo,Tan, Shengnan,Smyth, Hugh D. C.. 2017

[7]Magnetic molecularly imprinted polymers for the determination of beta-agonist residues in milk by ultra high performance liquid chromatography with tandem mass spectrometry. Liu, Hongcheng,Lin, Xin,Lin, Tao,Luo, Yinglan,Li, Qiwan,Liu, Hongcheng,Lin, Xin,Lin, Tao,Luo, Yinglan,Li, Qiwan,Liu, Hongcheng,Lin, Xin,Lin, Tao,Luo, Yinglan,Li, Qiwan,Zhang, Yulong.

[8]A reusable and sensitive biosensor for total mercury in canned fish based on fluorescence polarization. Shen, Tongfei,Yue, Qiaoli,Jiang, Xiuxiu,Wang, Lei,Xu, Shuling,Li, Haibo,Liu, Jifeng,Gu, Xiaohong,Zhang, Shuqiu.

[9]A novel immunosensor for squamous cell carcinoma antigen determination based on CdTe@Carbon dots nanocomposite electrochemiluminescence resonance energy transfer. Li, Shuhuai,Luo, Jinhui,Yang, Xinfeng,Wan, Yao,Liu, Chunhua.

[10]Optimization of ultrasound-assisted magnetic retrieval-linked ionic liquid dispersive liquid-liquid microextraction for the determination of cadmium and lead in water samples by graphite furnace atomic absorption spectrometry. Wang, Xie,Liu, Haitao,Lin, Chaowen,Pang, Liangyu,Yang, Junwei,Zeng, Qingbin.

[11]Degradation of nonylphenol polyethoxylates by functionalized Fe3O4 nanoparticle-immobilized Sphingomonas sp Y2. Bai, Naling,Wang, Sheng,Abuduaini, Rexiding,Zhao, Yuhua,Bai, Naling,Sun, Pengfei,Zhu, Xufen. 2018

[12]Chemiluminescent Detect of E. coli O157:H7 Using Immunological Method Based on Magnetic Nanoparticles. Li, Zhiyang,He, Nongyue,Li, Song,Liu, Hongna,Li, Xiaolong,Li, Zhiyang,He, Lei,Shi, Zhiyang,Wang, Hua,Dai, Yabin,Wang, Zhifei.

[13]Characterization and Insights Into the Nano Liposomal Magnetic Gene Vector Used for Cell Co-Transfection. Chen, Wenjie,Cui, Haixin,Zhao, Xiang,Wang, Yan,Sun, Chaojiao,Cui, Bo,Lei, Feng,Chen, Wenjie,Cui, Haixin,Zhao, Xiang,Wang, Yan,Sun, Chaojiao,Cui, Bo,Lei, Feng,Cui, Jinhui.

[14]A Facile Synthesis of DNA-Magnetic-Fluorescent Composite Particles. Wang, Miao,Xu, Siyuan,She, Yongxin,Jin, Maojun,Jin, Fen,Shao, Hua,Wang, Jing,Wang, Miao,Xu, Siyuan,She, Yongxin,Jin, Maojun,Jin, Fen,Shao, Hua,Wang, Jing,Wang, Miao,Xu, Siyuan,She, Yongxin,Jin, Maojun,Jin, Fen,Shao, Hua,Wang, Jing. 2012

[15]Ultrasensitive fluorescence detection of nucleic acids using exonuclease III-induced cascade two-stage isothermal amplification-mediated zinc (II)-protoporphyrin IX/G-quadruplex supramolecular fluorescent nanotags. Xue, Qingwang,Lv, Yanqin,Zhang, Yuanfu,Xu, Shulin,Li, Rui,Yue, Qiaoli,Li, Haibo,Wang, Lei,Liu, Jifeng,Gu, Xiaohong,Zhang, Shuqiu.

[16]Magnetic-nanobead-based competitive enzyme-linked aptamer assay for the analysis of oxytetracycline in food. Lu, Chunxia,Tang, Zonggui,Kang, Lichao,Sun, Fengxia,Lu, Chunxia,Tang, Zonggui,Kang, Lichao,Sun, Fengxia,Liu, Changbin.

[17]A multiplex RT-PCR assay for simultaneous detection of four viruses from sweet cherry. Zong, Xiaojuan,Wang, Wenwen,Wei, Hairong,Wang, Jiawei,Chen, Xin,Xu, Li,Zhu, Dongzi,Tan, Yue,Liu, Qingzhong.

[18]Facile fabrication of graphene oxide loaded with silver nanoparticles as antifungal materials. Cui, Jianghu,Yang, Yunhua,Zheng, Mingtao,Liu, Yingliang,Xiao, Yong,Lei, Bingfu,Chen, Wei. 2014

[19]Graphene oxide modulates root growth of Brassica napus L. and regulates ABA and IAA concentration. Cheng, Fan,Liu, Yu-Feng,Xie, Ling-Li,Yuan, Cheng-Fei,Xu, Ben-Bo,Lu, Guang-Yuan,Zhang, Xue-Kun.

[20]Preparation of Carriers Based on ZnO Nanoparticles Decorated on Graphene Oxide (GO) Nanosheets for Efficient Immobilization of Lipase from Candida rugosa. Zhang, Shan,Shi, Jie,Deng, Qianchun,Zheng, Mingming,Wan, Chuyun,Zheng, Chang,Li, Ya,Huang, Fenghong.

作者其他论文 更多>>