Nitrogen manipulation affects leaf senescence during late seed filling in soybean

文献类型: 外文期刊

第一作者: Islam, Md. Matiul

作者: Islam, Md. Matiul;Islam, Md. Matiul;Ishibashi, Yushi;Iwaya-Inoue, Mari;Nakagawa, Andressa C. S.;Tomita, Yuki;Zhao, Xin;Arima, Susumu;Zheng, Shao-Hui

作者机构:

关键词: Autophagy;Nitrogen;Nitrogen remobilization;Senescence;Soybean

期刊名称:ACTA PHYSIOLOGIAE PLANTARUM ( 影响因子:2.354; 五年影响因子:2.711 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: It is known that soybean plants store nitrogen during vegetative growth stage, and then remobilize it to the seeds during seed filling. This nitrogen remobilization is assumed to induce leaf senescence. The objective of this study was to investigate whether the manipulation of nitrogen availability could affect leaf senescence during seed filling. Soybean variety Fukuyutaka was grown in the side-opened vinyl house in 2014 and 2015 in Saga University, Japan. The plants were sufficiently watered with the solution containing 100 mg L-1 nitrogen and other nutrients before starting the treatments. The nutrient solution with different nitrogen concentrations (5-800 mg L-1) was applied to the plants from R6 (full-seed) to R7 (physiological maturity) stages. Parallel to the progress of plant senescence after R6 stage, the leaf-SPAD value, leaf nitrogen and soluble protein contents decreased gradually in control plants (100 mg L-1 nitrogen); however, these parameters did not change in higher nitrogen concentration treatments, whereas decreased quickly in lower nitrogen treatments. Therefore, the leaves and stems in higher nitrogen treatments remained green even at harvest time when the whole plant senesced in control and lower nitrogen treatments. The relative expression of an autophagy gene, GmATG8c, which is associated with nitrogen remobilization, showed the lower the nitrogen availability the earlier the up-regulation. The present results revealed that the shortage of nitrogen could stimulate the leaf senescence, while increasing soil nitrogen availability could delay even stop the leaf senescence, indicating that the nitrogen availability could be a key regulating factor of monocarpic senescence in soybean.

分类号: Q94

  • 相关文献

[1]Remobilization of vegetative nitrogen to developing grain in wheat (Triticum aestivum L.). Kong, Lingan,Xie, Yan,Hu, Ling,Feng, Bo,Li, Shengdong.

[2]Photosynthetic and biochemical activities in flag leaves of a newly developed superhigh-yield hybrid rice (Oryza sativa) and its parents during the reproductive stage. Zhang, C. -J.,Chu, H. -J.,Chen, G. -X.,Shi, D. -W.,Zuo, M.,Wang, J.,Lu, C. -G.,Wang, P.,Chen, L..

[3]Earthworms enhanced winter oilseed rape (Brassica napus L.) growth and nitrogen uptake. Zhang, Shujie,Chao, Ying,Zhang, Chunlei,Cheng, Jing,Li, Jun,Ma, Ni.

[4]Effects of selenium and sulfur on antioxidants and physiological parameters of garlic plants during senescence. Cheng Bo,Lian Hai-feng,Yu Xin-hui,Sun Ya-li,Sun Xiu-dong,Shi Qing-hua,Liu Shi-qi,Liu Ying-ying. 2016

[5]Cloning and characterization of a gene encoding cysteine proteases from senescent leaves of Gossypium hirsutum. Shen, FF,Yu, SX,Han, XL,Fan, SL.

[6]Regulation of endogenous hormones on post-harvest senescence in transgenic broccoli carrying an antisense or a sense BO-ACO 2 gene. Qin, Feifei,Wang, Cheng-rong,Wang, Ran,Ma, Gang,Qin, Feifei,Qin, Feifei,Xu, Hui-lian. 2009

[7]Characteristics of ribulose-1,5-bisphosphate carboxylase and C4 pathway key enzymes in flag leaves of a super-high-yield hybrid rice and its parents during the reproductive stage. Zhang, C-J.,Chen, L.,Shi, D. -W.,Chen, G. -X.,Lu, C. -G.,Wang, P.,Wang, J.,Chu, H-J,Zhou, Q. -C.,Zuo, M.,Sun, L.. 2007

[8]Transcriptomic response of cowpea bruchids to N-acetylglucosamine-specific lectins. Wang, Li-Hua,Fang, Ji-Chao,Wang, Li-Hua,Chi, Yong Hun,Guo, Feng-Guang,Zhu-Salzman, Keyan,Li-Byarlay, Hongmei,Balfe, Susan,Pittendrigh, Barry R.. 2015

[9]Characterization and mapping of a novel mutant sms1 (senescence and male sterility 1) in rice. Yan, Wenyi,Zeng, Longjun,Peng, Yu,Yan, Dawei,Yang, Weibing,Yang, Donglei,He, Zuhua,Yan, Wenyi,Dong, Yanjun,Yan, Wenyi,Ye, Shenghai,Jin, Qingsheng,Zhang, Xiaoming. 2010

[10]Quantitative Trait Loci Mapping of Dark-Induced Senescence in Winter Wheat (Triticum aestivum). Li, Hongwei,Lin, Fanyun,Wang, Gui,Zheng, Qi,Li, Bin,Li, Zhensheng,Jing, Ruffian. 2012

[11]Effect of BO-ACO 2 gene on post-harvest senescence in transgenic broccoli (Brassica oleracea L. var. italica). Qin, Feifei,Wang, Chengrong,Wang, Ran,Ma, Gang,Qin, Feifei,Qin, Feifei,Xu, Hui-lian. 2011

[12]Programmed cell death is responsible for replaceable bud senescence in chestnut (Castanea mollissima BL.). Wang, Guangpeng,Zhang, Zhihong,Zhao, Guiling,Wang, Guangpeng,Kong, Dejun,Liu, Qingxiang. 2012

[13]The antioxidative defense system is involved in the premature senescence in transgenic tobacco (Nicotiana tabacum NC89). Liu, Yu,Wang, Lu,Liu, Heng,Zhao, Rongrong,Liu, Bin,Zhang, Yuanhu,Fu, Quanjuan. 2016

[14]Effects of post-harvest stigmasterol treatment on quality-related parameters and antioxidant enzymes of green asparagus (Asparagus officinalis L.). Dong, Huanhuan,Wang, Xiangyang,Huang, Jianying,Xing, Jianrong. 2016

[15]Molecular cloning and function analysis of the stay green gene in rice. Jiang, Huawu,Li, Meiru,Liang, Naiting,Yan, Hongbo,Wei, Yubo,Xu, Xinlan,Liu, Jian,Xu, Zhifang,Chen, Fan,Wu, Guojiang.

[16]Sugars in postharvest lotus seeds were modified by 6-benzylaminopurine treatment through altering related enzymes involved in starch-sucrose metabolism. Luo, Shufen,Hu, Huali,Zhang, Leigang,Zhou, Hongsheng,Li, Pengxia.

[17]Expression of the ethylene response factor gene TSRF1 enhances abscisic acid responses during seedling development in tobacco. Zhang, Hongbo,Zhang, Zhijin,Huang, Rongfeng,Zhang, Hongbo,Chen, Jia,Wang, Xue-Chen,Yang, Yuhong,Zhang, Hongbo,Zhang, Zhijin,Huang, Rongfeng.

[18]Isolation and characterization of a cDNA encoding a papain-like cysteine protease from alfalfa. Yan, Longfeng,Han, Jianguo,Sun, Yan,Yan, Longfeng,Yang, Qingchuan,Kang, Junmei,Liu, Zhipeng,Wu, Mingsheng.

[19]Analysis of thylakoid membrane protein and photosynthesis-related key enzymes in super high-yield hybrid rice LYPJ grown in field condition during senescence stage. Wang, Yuwen,Yu, Jing,Jiang, Xiaohan,Sun, Lingang,Li, Kang,Wang, Pingyang,Wu, Min,Chen, Guoxiang,Wu, Min,Lv, Chuangen.

[20]Photosynthetic changes of flag leaves during senescence stage in super high-yield hybrid rice LYPJ grown in field condition. Wang, Yuwen,Zhang, Jingjing,Yu, Jing,Jiang, Xiaohan,Sun, Lingang,Wu, Min,Chen, Guoxiang,Wu, Min,Lv, Chuangen.

作者其他论文 更多>>