Analyses of transcriptome profiles and selected metabolites unravel the metabolic response to NH4+ and NO3- as signaling molecules in tea plant (Camellia sinensis L.)

文献类型: 外文期刊

第一作者: Liu, Mei-Ya

作者: Liu, Mei-Ya;Zhang, Qunfeng;Tang, Dandan;Shi, Yuanzhi;Ma, Lifeng;Yi, Xiaoyun;Ruan, Jianyun;Tang, Dandan;Burgos, Asdrubal

作者机构:

关键词: NH4+;NO3-;Signaling molecule;Metabolic response;Tea plant

期刊名称:SCIENTIA HORTICULTURAE ( 影响因子:3.463; 五年影响因子:3.672 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Ammonium (NH4+) and nitrate (NO3-) are the two major forms of inorganic nitrogen absorbed by plants and can also act as signals regulating gene expression. Tea plant preferentially absorbs and utilizes NH4+ over NO3-, which in turn significantly affect the tea quality. However, information about the signaling functions of the N forms regulating secondary metabolism in tea plant is very limited in comparison with vast prevailing investigation on plant primary nitrogen and carbon metabolism. In the present experiment, tea plants were treated with NH4+ or NO3- enriched hydroponic medium for a short duration (30 min) and were subjected to transcriptome and selected metabolites analyses. The objective was to dissect the signaling effect of N forms regulating the metabolism of quality-related metabolites mainly flavonoids, caffeine and theanine in this economically important crop. Our results suggested that genes encoding for nitrogen transporters were highly responsive to both NH4+ and NO3- signaling molecules in tea roots, while they were specifically induced by NH4+ in leaves. Otherwise, the accumulation of theanine in roots was promoted by NH4+ signaling, while both NH4+ and NO3- suppressed the expression of genes in the upstream pathway of caffeine biosynthesis (SAM cycle) in leaves. Furthermore, NH4+ supply was associated with enhanced biosynthesis of catechin and epicatechin in tea plant leaves. In conclusion, NH4+ signaling induced higher response of gene expression and metabolism in leaves but lower response in roots than that of NO3-, indicating that the transduction of N signal played a vital role on the preferential assimilation for NH4+ over NO3- in tea plant. The biosynthesis of theanine and catechin could be induced by NH4+ as signaling molecule in tea plant within a short time. (C) 2017 Elsevier B.V. All rights reserved.

分类号: S6

  • 相关文献

[1]NO3 (-)/NH4 (+) ratios affect plant growth, chlorophyll content, respiration rate, and morphological structure in Malus hupehensis seedlings. Dong, Yu,Zhao, Qian,Guan, Jun-feng,Dong, Yu,Zhi, Huan-huan,Zhao, Qian. 2015

[2]The antagonistic effect of hydroxyl radical on the development of a hypersensitive response in tobacco. Deng, Sheng,Yu, Mina,Wang, Ying,Jia, Qin,Dong, Hansong,Deng, Sheng,Yu, Mina,Lin, Ling.

[3]Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis). Li, Chun-Fang,Wang, Xin-Chao,Yao, Ming-Zhe,Chen, Liang,Yang, Ya-Jun,Zhu, Yan,Yu, Yao,Zhao, Qiong-Yi,Li, Xuan,Wang, Sheng-Jun,Luo, Da. 2015

[4]SSR-based genetic mapping and QTL analysis for timing of spring bud flush, young shoot color, and mature leaf size in tea plant (Camellia sinensis). Tan, Li-Qiang,Wang, Li-Yuan,Xu, Li-Yi,Wu, Li-Yun,Zhang, Cheng-Cai,Wei, Kang,Bai, Pei-Xian,Li, Hai-Lin,Cheng, Hao,Tan, Li-Qiang,Xu, Li-Yi,Peng, Min,Qi, Gui-Nian,Wang, Li-Yuan,Wu, Li-Yun,Zhang, Cheng-Cai,Wei, Kang,Bai, Pei-Xian,Li, Hai-Lin,Cheng, Hao. 2016

[5]Biochemical and transcriptomic analyses reveal different metabolite biosynthesis profiles among three color and developmental stages in 'Anji Baicha' (Camellia sinensis). Li, Chun-Fang,Xu, Yan-Xia,Ma, Jian-Qiang,Jin, Ji-Qiang,Huang, Dan-Juan,Yao, Ming-Zhe,Ma, Chun-Lei,Chen, Liang,Li, Chun-Fang. 2016

[6]Probing Behavior of Empoasca vitis (Homoptera: Cicadellidae) on Resistant and Susceptible Cultivars of Tea Plants. Miao, Jin,Han, Bao-Yu,Zhang, Qing-He. 2014

[7]Transcriptomic analysis of the effects of three different light treatments on the biosynthesis of characteristic compounds in the tea plant by RNA-Seq. Hao, Xinyuan,Li, Litian,Hu, Yurong,Zhou, Chao,Wang, Xinchao,Wang, Lu,Zeng, Jianming,Yang, Yajun. 2016

[8]Isolation and expression features of hexose kinase genes under various abiotic stresses in the tea plant (Camellia sinensis). Li, Na-na,Qian, Wen-jun,Wang, Lu,Cao, Hong-li,Hao, Xin-yuan,Yang, Ya-jun,Wang, Xin-chao,Li, Na-na,Wang, Lu,Cao, Hong-li,Hao, Xin-yuan,Yang, Ya-jun,Wang, Xin-chao,Qian, Wen-jun.

[9]Development of a 44 K custom oligo microarray using 454 pyrosequencing data for large-scale gene expression analysis of Camellia sinensis. Wang, Lu,Wang, Xinchao,Yue, Chuan,Cao, Hongli,Zhou, Yanhua,Yang, Yajun,Wang, Lu,Wang, Xinchao,Zhou, Yanhua,Wang, Xinchao,Yue, Chuan,Cao, Hongli,Yang, Yajun.

[10]Attractiveness of host volatiles combined with background visual cues to the tea leafhopper, Empoasca vitis. Cai, Xiao-Ming,Xu, Xiu-Xiu,Bian, Lei,Luo, Zong-Xiu,Xin, Zhao-Jun,Chen, Zong-Mao,Cai, Xiao-Ming.

[11]Herbivore species, infestation time, and herbivore density affect induced volatiles in tea plants. Cai, Xiao-Ming,Sun, Xiao-Ling,Dong, Wen-Xia,Wang, Guo-Chang,Chen, Zong-Mao,Cai, Xiao-Ming,Wang, Guo-Chang.

[12]Differential expression of gibberellin- and abscisic acid-related genes implies their roles in the bud activity-dormancy transition of tea plants. Yue, Chuan,Cao, Hongli,Guo, Yuqiong,Ye, Naixing,Yue, Chuan,Cao, Hongli,Hao, Xinyuan,Zeng, Jianming,Qian, Wenjun,Yang, Yajun,Wang, Xinchao. 2018

[13]Identification and Evaluation of Reliable Reference Genes for Quantitative Real-Time PCR Analysis in Tea Plant (Camellia sinensis (L.) O. Kuntze). Hao, Xinyuan,Yang, Yajun,Xiao, Bin,Hao, Xinyuan,Horvath, David P.,Chao, Wun S.,Hao, Xinyuan,Yang, Yajun,Wang, Xinchao,Hao, Xinyuan,Yang, Yajun,Wang, Xinchao. 2014

[14]Cloning of a new glutathione peroxidase gene from tea plant (Camellia sinensis) and expression analysis under biotic and abiotic stresses. Fu, Jian-Yu. 2014

[15]The validation of two major QTLs related to the timing of spring bud flush in Camellia sinensis. Tan, Li-Qiang,Peng, Min,Zou, Yao,Chen, Sheng-Xiang,Li, Pin-Wu,Tang, Qian,Xu, Li-Yi,Wang, Li-Yuan,Wei, Kang,Cheng, Hao,Xu, Li-Yi,Wang, Li-Yuan,Wei, Kang,Cheng, Hao. 2018

[16]Exogenous Melatonin Alleviates Cold Stress by Promoting Antioxidant Defense and Redox Homeostasis in Camellia sinensis L.. Li, Xin,Wei, Ji-Peng,Li, Yang,Zhang, Lan,Han, Wen-Yan,Scott, Eric R.,Liu, Jian-Wei,Guo, Shuai. 2018

[17]Natural allelic variations of TCS1 play a crucial role in caffeine biosynthesis of tea plant and its related species. Jin, Ji-Qiang,Yao, Ming-Zhe,Ma, Chun-Lei,Ma, Jian-Qiang,Chen, Liang.

[18]Functional natural allelic variants of flavonoid 3',5'-hydroxylase gene governing catechin traits in tea plant and its relatives. Jin, Ji-Qiang,Ma, Jian-Qiang,Yao, Ming-Zhe,Ma, Chun-Lei,Chen, Liang.

[19]Molecular cloning and expression analysis of a putative sesquiterpene synthase gene from tea plant (Camellia sinensis). Fu, Jian-yu.

[20]Association mapping of caffeine content with TCS1 in tea plant and its related species. Jin, Ji-Qiang,Yao, Ming-Zhe,Ma, Chun-Lei,Ma, Jian-Qiang,Chen, Liang.

作者其他论文 更多>>