Effects of 5-aminolevulinic acid on nitrogen metabolism and ion distribution of watermelon seedlings under salt stress

文献类型: 外文期刊

第一作者: Chen, G.

作者: Chen, G.;Fan, P. S.;Feng, W. M.;Guan, A. Q.;Lu, Y. Y.;Wan, Y. L.

作者机构:

关键词: Citrullus lanatus;5-aminolevulinic acid;nitrogen metabolism;proline;ion distribution;salt stress

期刊名称:RUSSIAN JOURNAL OF PLANT PHYSIOLOGY ( 影响因子:1.481; 五年影响因子:1.608 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The effects of foliar spray application of 5-aminolevulinic acid (ALA) on the growth, nitrogen metabolism, and ion distribution of salt-stressed watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) seedlings were investigated. Supplementation of the nutrient solution with 100 mM NaCl significantly reduced leaf and root biomass of watermelon plants. Foliar application of 1.25 mM ALA significantly alleviated the inhibition of plant growth under salt stress. Salinity induced significant accumulation of nitrate, ammonium, and soluble protein and a significant decrease in the activities of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), and glutamate dehydrogenase (GDH) in watermelon plants. However, ALA significantly increased the activities of NR, GS, GOGAT, and GDH, but decreased the ammonium content and NiR activity. In addition, salt stress resulted in significant accumulation of Na+ and Cl- in plants, but decreased the contents of K+ and Mg2+. Application of ALA alleviated the salt stress-induced ion toxicity, and increased the contents of K+ and Mg2+. ALA also increased soluble protein and proline contents in salt-stressed watermelon plants. These results indicated that application of ALA alleviated the accumulation of Na+ and Cl- in salt-stressed watermelon plants, especially through regulating nitrogen metabolism and ion distribution, which were associated with an improvement in plant growth.

分类号: Q94

  • 相关文献

[1]5-aminolevulinic acid improves salt tolerance mediated by regulation of tetrapyrrole and proline metabolism in Brassica napus L. seedlings under NaCl stress. Xiong, Jun-Lan,Wang, Hang-Chao,Tan, Xiao-Yu,Zhang, Chun-Lei,Zhang, Chun-Lei,Naeem, Muhammad Shahbaz. 2018

[2]Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.). Wang, Huan,Shi, Decheng,Liu, Bao,Yang, Chunwu,Zhang, Meishan,Guo, Rui,Lin, Xiuyun. 2012

[3]Rearrangement of nitrogen metabolism in rice (Oryza sativa L.) under salt stress. Xu, Jianwen,Huang, Xi,Lan, Hongxia,Zhang, Hongsheng,Huang, Ji,Xu, Jianwen.

[4]Effect of Salt Stress on Growth and Physiology in Melia azedarach Seedlings of Six Provenances. Xu, Liping,Xu, Liping,Zhang, Zihan,Yu, Fangyuan,Guo, Jie,Liu, Jianbin,Yue, Haiwang. 2018

[5]Disruption of AtWNK8 Enhances Tolerance of Arabidopsis to Salt and Osmotic Stresses via Modulating Proline Content and Activities of Catalase and Peroxidase. Zhang, Baige,Liu, Kaidong,Zheng, Yan,Wang, Yingxiang,Wang, Jinxiang,Liao, Hong,Zhang, Baige,Liu, Kaidong,Wang, Jinxiang. 2013

[6]Analysis of salt-induced physiological and proline changes in 46 switchgrass (Panicum virgatum) lines indicates multiple response modes. Kim, Jeongwoon,Childs, Kevin L.,Liu, Yiming,Zhang, Xunzhong,Zhao, Bingyu,Childs, Kevin L.,Liu, Yiming.

[7]Effects of neutral salt and alkali on ion distributions in the roots, shoots, and leaves of two alfalfa cultivars with differing degrees of salt tolerance. Wang Xiao-shan,Ren Hai-long,Wei Zen-wu,Ren Wei-bo,Wang Yun-wen. 2017

[8]Influence of 5-aminolevulinic acid on photosynthetically related parameters and gene expression in Brassica napus L. under drought stress. Liu, D.,Yang, A. G.,Hu, L. Y.,Ali, B.,Wan, G. L.,Zhou, W. J.,Hu, L. Y.,Ali, B.,Wan, G. L.,Zhou, W. J.,Xu, L.,Xu, L..

[9]Enhancement of 5-aminolevulinic acid production by metabolic engineering of the glycine biosynthesis pathway in Corynebacterium glutamicum. Zou, Yalan,Chen, Tao,Feng, Lili,Zhang, Shuanghong,Wang, Zhiwen,Zou, Yalan,Chen, Tao,Feng, Lili,Zhang, Shuanghong,Wang, Zhiwen,Zou, Yalan,Chen, Tao,Feng, Lili,Zhang, Shuanghong,Wang, Zhiwen,Xing, Dongxu.

[10]Proteomic analysis of responsive root proteins of Fusarium oxysporum-infected watermelon seedlings. Zhang, Man,Xu, Jinhua,Liu, Guang,Yao, Xiefeng,Ren, Runsheng,Yang, Xingping. 2018

[11]Mutation in the gene encoding 1-aminocyclopropane-1-carboxylate synthase 4 (CitACS4) led to andromonoecy in watermelon. Ji, Gaojie,Zhang, Jie,Zhang, Haiying,Sun, Honghe,Gong, Guoyi,Shi, Jianting,Tian, Shouwei,Guo, Shaogui,Ren, Yi,Xu, Yong,Ji, Gaojie,Shen, Huolin,Gao, Junping. 2016

[12]Effects of chilling and high temperatures on photosynthesis and chlorophyll fluorescence in leaves of watermelon seedlings. Hou, W.,Yang, F. S.,Hou, W.,Pan, J. L.,Guan, M. Y.,Sun, A. H.,Chen, H. L..

[13]Dynamic characteristics of enzymes and transcriptome related to sugar metabolism and accumulation in sweet and non-sweet watermelon fruits. Xu, Y.,Guo, S.,Liu, J.,He, H.,Zhang, H.,Ren, Y.,Sun, H.,Gong, G.,Fei, Z.,Zheng, Y.,Huang, M.,Zhong, S.,Liu, J.. 2012

[14]Exploiting Illumina sequencing for the development of InDel markers in watermelon (Citrullus lanatus). Liu, G.,Xu, J. H.,Zhang, M.,Li, P. F.,Yao, X. F.,Hou, Q.,Zhu, L. L.,Ren, R. S.,Yang, X. P..

[15]Identification and validation of a core set of microsatellite markers for genetic diversity analysis in watermelon, Citrullus lanatus Thunb. Matsum. & Nakai. Zhang, Haiying,Wang, Hui,Guo, Shaogui,Ren, Yi,Gong, Guoyi,Xu, Yong,Weng, Yiqun.

[16]High-level expression of a novel chromoplast phosphate transporter ClPHT4;2 is required for flesh color development in watermelon. Zhang, Jie,Guo, Shaogui,Ren, Yi,Zhang, Haiying,Gong, Guoyi,Zhou, Ming,Wang, Guizhang,Zong, Mei,He, Hongju,Liu, Fan,Xu, Yong.

[17]Comparative transcriptome profiling of potassium starvation responsiveness in two contrasting watermelon genotypes. Fan, Molin,Huang, Yuan,Zhong, Yaqin,Kong, Qiusheng,Xie, Junjun,Niu, Mengliang,Bie, Zhilong,Xu, Yong.

[18]Dynamic characteristics of sugar accumulation and related enzyme activities in sweet and non-sweet watermelon fruits. Liu, Jingan,Guo, Shaogui,He, Hongju,Zhang, Haiying,Gong, Guoyi,Ren, Yi,Xu, Yong,Liu, Jingan,Guo, Shaogui,He, Hongju,Zhang, Haiying,Gong, Guoyi,Ren, Yi,Xu, Yong.

[19]Characterization of the watermelon seedling infection process by Fusarium oxysporum f. sp niveum. Zhang, M.,Xu, J. H.,Liu, G.,Yao, X. F.,Li, P. F.,Yang, X. P..

[20]Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. ZhongQun, He,ChaoXing, He,ZhiBin, Zhang,ZhiRong, Zou,HuaiSong, Wang.

作者其他论文 更多>>