Winter wheat yield estimation based on multi-source medium resolution optical and radar imaging data and the AquaCrop model using the particle swarm optimization algorithm
文献类型: 外文期刊
第一作者: Jin, Xiuliang
作者: Jin, Xiuliang;Jin, Xiuliang;Li, Zhenhai;Yang, Guijun;Yang, Hao;Feng, Haikuan;Xu, Xingang;Wang, Jihua;Jin, Xiuliang;Li, Zhenhai;Yang, Guijun;Yang, Hao;Feng, Haikuan;Xu, Xingang;Wang, Jihua;Li, Xinchuan;Luo, Juhua
作者机构:
关键词: Optical spectral vegetation indices (OSVIs);Radar polarimetric parameters (RPPs);Biomass;Particle swarm optimization (PSO);Yield estimation
期刊名称:ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING ( 影响因子:8.979; 五年影响因子:9.948 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: Timely and accurate estimation of winter wheat yield at a regional scale is crucial for national food policy and security assessments. Near-infrared reflectance is not sensitive to the leaf area index (LAI) and biomass of winter wheat at medium to high canopy cover (CC), and most of the vegetation indices displayed saturation phenomenon. However, LAI and biomass at medium to high CC can be efficiently estimated using imaging data from radar with stronger penetration, such as RADARSAT-2. This study had the following three objectives: (i) to combine vegetation indices based on our previous studies for estimating CC and biomass for winter wheat using HJ-1A/B and RADARSAT-2 imaging data; (ii) to combine HJ-1A/B and RADARSAT-2 imaging data with the AquaCrop model using the particle swarm optimization (PSO) algorithm to estimate winter wheat yield; and (iii) to compare the results from the assimilation of HJ-1A/B + RADARSAT-2 imaging data, HJ-1A/13 imaging data, and RADARSAT-2 imaging data into the AquaCrop model using the PSO algorithm. Remote sensing data and concurrent LAI, biomass, and yield of sample fields were acquired in Yangling District, Shaanxi, China, during the 2014 winter wheat growing season. The PSO optimization algorithm was used to integrate the AquaCrop model and remote sensing data for yield estimation. The modified triangular vegetation index 2 (MTVI2) x radar vegetation index (RVI) and the enhanced vegetation index (EVI) x RVI had good relationships with CC and biomass, respectively. The results indicated that the predicted and measured yield (R-2 = 0.31 and RMSE = 0.94 ton/ha) had agreement when the estimated CC from the HJ-1A/B and RADARSAT-2 data was used as the dynamic input variable for the AquaCrop model. When the estimated biomass from the HJ-1A/B and RADARSAT-2 data was used as the dynamic input variable for the AquaCrop model, the predicted yield showed agreement with the measured yield (R-2 = 0.42 and RMSE = 0.81 ton/ha). These results show that using the biomass as the dynamic input variable provides a better yield estimation than using the CC as the dynamic variable. The predicted biomass and yield were more accurately estimated by combining the HJ-1A/B and RADARSAT-2 data with the AquaCrop model than by combining the only HJ-1A/B or RADARSAT-2 data with the AquaCrop model using the PSO algorithm. The results indicated that the PSO-based assimilation method could be used to estimate the winter wheat yield from the spot to the regional scale. (C) 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
分类号: P2
- 相关文献
作者其他论文 更多>>
-
UssNet: a spatial self-awareness algorithm for wheat lodging area detection
作者:Zhang, Jun;Wu, Qiang;Duan, Fenghui;Liu, Cuiping;Xiong, Shuping;Ma, Xinming;Cheng, Jinpeng;Feng, Mingzheng;Dai, Li;Wang, Xiaochun;Yang, Hao;Yang, Guijun;Chang, Shenglong
关键词:Unmanned aerial vehicle; State space models; Wheat lodging area identification; Semantic segmentation
-
Synergistic use of stay-green traits and UAV multispectral information in improving maize yield estimation with the random forest regression algorithm
作者:Liu, Yuan;Meng, Lin;Nie, Chenwei;Liu, Yadong;Song, Yang;Jin, Xiuliang;Liu, Yuan;Fan, Kaijian;Meng, Lin;Nie, Chenwei;Liu, Yadong;Song, Yang;Jin, Xiuliang;Cheng, Minghan
关键词:UAV multispectral; Maize yield; Stay-Green Index (SGI); Machine learning; Remote sensing
-
A Comprehensive Evaluation of Monocular Depth Estimation Methods in Low-Altitude Forest Environment
作者:Jia, Jiwen;Kang, Junhua;Gao, Xiang;Zhang, Borui;Yang, Guijun;Chen, Lin;Yang, Guijun
关键词:monocular depth estimation; CNN; vision transformer; forest environment; comparative study
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
Research on variety identification of common bean seeds based on hyperspectral and deep learning
作者:Li, Shujia;Sun, Laijun;Zhang, Lingyu;Bai, Hongyi;Wang, Ziyue;Jin, Xiuliang;Feng, Guojun
关键词:Hyperspectral; Common bean; Convolutional neural network; Deep learning
-
Tissue-specific expression, functional analysis, and polymorphism of the KRT2 gene in sheep horn
作者:Yang, Hao;Shan, Mingzhu;He, Jianning;Yang, Hao;Chu, Mingxing;Zhang, Xiaoxu;Shan, Mingzhu;Lu, Xiaoning;Pan, Zhangyuan;Naominggaowa
关键词:KRT2; Sheep; Horn; SNP; Evolution
-
Sensitivity Analysis of AquaCrop Model Parameters for Winter Wheat under Different Meteorological Conditions Based on the EFAST Method
作者:Xing, Huimin;Sun, Qi;Li, Zhiguo;Wang, Zhen;Xing, Huimin;Wang, Zhen;Xing, Huimin;Sun, Qi;Wang, Zhen;Li, Zhiguo;Feng, Haikuan
关键词:winter wheat; biomass; sensitivity analysis; AquaCrop model