Yield, growth, canopy traits and photosynthesis in high-yielding, synthetic hexaploid-derived wheats cultivars compared with non-synthetic wheats

文献类型: 外文期刊

第一作者: Wu, Xiaoli

作者: Wu, Xiaoli;Li, Chaosu;Yang, Wuyun;Ma, Xiaoling;Li, Shizhao;Huang, Mingbo

作者机构:

关键词: fruiting efficiency;wheat

期刊名称:CROP & PASTURE SCIENCE ( 影响因子:2.286; 五年影响因子:2.507 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Continuous improvement of potential yield is one of the most important goals of wheat breeding. The introduction of synthetic hexaploid wheat (SHW) germplasm has broken the bottleneck in potential yield, taking wheat breeding in China's Sichuan Basin to a new level. However, systematic research on the physiological basis of high-yielding, SHW-derived cultivars has lagged behind. In the present study, three SHW-derived, high-yielding cultivars and three typical, non-synthetic cultivars widely used in wheat production were chosen for a 5-year study. Post-anthesis canopy structure, rates of canopy apparent photosynthesis (CAP), attenuation during grain filling, dry matter partitioning and other physiological parameters were studied. The average yield of the SHW-derived cultivars was 9154kg ha(-1), which was 13.5% higher than that of the non-synthetic cultivars. The increased yield was due to increased biomass and/or increased harvest index (HI). SHW-derived cultivars had shorter but wider flag leaves, with length:width ratio <10. The basal angle and open angle were small at the beginning of anthesis, which gradually increased as grain-filling progressed; the SPAD readings of the flag leaf and penultimate leaf of the SHW-derived cultivars was significantly higher than that of the non-synthetic cultivars from anthesis to mid-late grainfill. The CAP values at anthesis and 20 days post-anthesis were significantly higher in the SHW-derived cultivars than in non-synthetic cultivars, in which the difference was most significant between 10:00 and 12:00. The dry matter partitioning at anthesis varied significantly among cultivars, and the stem and sheath proportion of the SHW-derived cultivars was larger than that of the non-synthetic cultivars. At maturation, the spike rachis and leaves of the SHW-derived cultivars accounted for significantly smaller proportions of the total aboveground dry weight. Accordingly, the grain proportion was increased by 1-4 percentage points. Yield components were closely related to measured physiological parameters; e.g. grain yield correlated positively with SPAD values (r=0.960**) and negatively with the proportion of spike rachis at maturation (r=-0.946**). This indicated that a semi-compact plant morphology, with high SPAD readings and high CAP and greater HI, was the physiological basis of high yield in SHW-derived cultivars.

分类号: S

  • 相关文献

[1]Heat Priming Induces Trans-generational Tolerance to High Temperature Stress in Wheat. Wang, Xiao,Xin, Caiyun,Cai, Jian,Zhou, Qin,Dai, Tingbo,Cao, Weixing,Jiang, Dong,Xin, Caiyun. 2016

[2]Distribution Characteristics of Soil Cadmium in Different Textured Paddy Soil Profiles and Its Relevance with Cadmium Uptake by Crops. Wang Zheng-yin,Qin Yu-sheng,Zhan Shao-jun,Yu Hua,Tu Shi-hua. 2013

[3]Molecular cloning, functional verification, and evolution of TmPm3, the powdery mildew resistance gene of Triticum monococcum L.. Zhao, C. Z.,Li, Y. H.,Dong, H. T.,Geng, M. M.,Liu, W. H.,Li, F.,Ni, Z. F.,Xie, C. J.,Sun, Q. X.,Zhao, C. Z.,Dong, H. T.,Geng, M. M.,Liu, W. H.,Li, F.,Ni, Z. F.,Xie, C. J.,Sun, Q. X.,Zhao, C. Z.,Wang, X. J.. 2016

[4]Wheat Optimized Fertilization of High Yield Field with Returning Whole Stalks into the Soil in Huang-huai-hai Plain. Sui, Xue-Yan,Wang, Meng,Wang, Yong,Guo, Hong-Hai,Li, Zhan,Zhang, Xiao-Dong. 2016

[5]Effects of Cadmium Stress on Alternative Oxidase and Photosystem II in Three Wheat Cultivars. Xu, Fei,Zhang, Zhong-Wei,Chen, Yang-Er,Wang, Xiao,Shang, Jing,Lin, Hong-Hui,Duan, Yong-Ping,Tu, Shi-Hua,Feng, Wen-Qiang. 2010

[6]Haynaldia villosa NAM-V1 is linked with the powdery mildew resistance gene Pm21 and contributes to increasing grain protein content in wheat. Zhao, Chuanzhi,Lv, Xindi,Li, Yinghui,Li, Feng,Geng, Miaomiao,Mi, Yangyang,Ni, Zhongfu,Xie, Chaojie,Sun, Qixin,Zhao, Chuanzhi,Lv, Xindi,Li, Yinghui,Li, Feng,Geng, Miaomiao,Mi, Yangyang,Ni, Zhongfu,Xie, Chaojie,Sun, Qixin,Zhao, Chuanzhi. 2016

[7]Assessment of Land Suitability Potentials for Selecting Winter Wheat Cultivation Areas in Beijing, China, Using RS and GIS. Wang Da-cheng,Wang Ji-hua,Wang Da-cheng,Li Cun-jun,Song Xiao-yu,Wang Ji-hua,Yang Xiao-dong,Huang Wen-jiang,Wang Jun-ying,Zhou Ji-hong. 2011

[8]Dissipation and Residues of Dichlorprop-P and Bentazone in Wheat-Field Ecosystem. Feng, Xiaoxiao,Pan, Lixiang,Zhang, Hongyan,Yu, Jianlei,Song, Guochun. 2016

[9]Competitive interaction in a jujube tree/wheat agroforestry system in northwest China's Xinjiang Province. Zhang, W.,Wang, B. J.,Gan, Y. W.,Duan, Z. P.,Hao, X. D.,Lv, X.,Li, L. H.,Xu, W. L.. 2017

[10]Cuticular Wax Accumulation Is Associated with Drought Tolerance in Wheat Near-Isogenic Lines. Guo, Jun,Yu, Xiaocong,Li, Haosheng,Cheng, Dungong,Liu, Aifeng,Liu, Jianjun,Liu, Cheng,Song, Jianmin,Guo, Jun,Yu, Xiaocong,Li, Haosheng,Cheng, Dungong,Liu, Aifeng,Liu, Jianjun,Liu, Cheng,Song, Jianmin,Xu, Wen,Shen, Hao,Zhao, Shijie. 2016

[11]Preliminary Study on the Physiological Characteristics of Transgenic Wheat with Maize C-4-pepc Gene in Field Conditions. Han, L. L.,Han, L. L.,Xu, W. G.,Hu, L.,Li, Y.,Qi, X. L.,Zhang, J. H.,Zhang, H. F.,Wang, Y. X.. 2014

[12]Effect of Biochars from Rice Husk, Bran, and Straw on Heavy Metal Uptake by Pot-Grown Wheat Seedling in a Historically Contaminated Soil. Zheng, Ruilun,Xiao, Bo,Chen, Zheng,Wang, Xiaohui,Huang, Yizong,Sun, Guoxin,Cai, Chao. 2013

[13]Detection of Fusarium head blight resistance QTL in a wheat population using bulked segregant analysis. Shen, X,Zhou, M,Lu, W,Ohm, H. 2003

[14]NOVEL FLUORESCENT SEQUENCE-RELATED AMPLIFIED POLYMORPHISM (FSRAP) MARKERS FOR THE CONSTRUCTION OF A GENETIC LINKAGE MAP OF WHEAT (Triticum aestivum L.). Zhang, Li,Yu, Yan,Wei, Shuhong,Yang, Jun,Yang, Zaijun,Qu, Jipeng,Peng, Zhengsong,Lu, Lu,Yang, Wuyun. 2017

[15]Different Tolerance in Bread Wheat, Durum Wheat and Barley to Fusarium Crown Rot Disease Caused by Fusarium pseudograminearum. Liu, Yaxi,Wei, Yuming,Zheng, Youliang,Liu, Yaxi,Ma, Jun,Yan, Wei,Liu, Chunji,Ma, Jun,Yan, Guijun,Yan, Wei,Zhou, Meixue,Zhou, Meixue. 2012

[16]Research on Rapid and Non-Destructive Identification of Aging Wheat Based on ATR-Terahertz Spectroscopy Combined with PLS-DA. Wang Dong,Pan Li-gang,Li An,Jin Xin-xin,Ma Zhi-hong,Wang Ji-hua,Wang Dong,Pan Li-gang,Li An,Jin Xin-xin,Ma Zhi-hong,Wang Ji-hua,Liu Long-hai,Jiang, Justin. 2016

[17]ASSIMILA TION OF REMOTELY SENSED CANOPY VARIABLES INTO CROP MODELS FOR AN ASSESSMENT OF DROUGHT-RELATED YIELD LOSSESS: A COMPARSION OF MODELS OF DIFFERENT COMPLEXITY. Casa, R.,Silvestro, P. C.,Yang, H.,Yang, G.,Pignatti, S.,Pascucci, S.,Yang, H.,Yang, G.. 2016

[18]Photochemical and antioxidative responses of the glume and flag leaf to seasonal senescence in wheat. Kong, Lingan,Sun, Mingze,Xie, Yan,Wang, Fahong,Zhao, Zhendong,Sun, Mingze. 2015

[19]Molecular Characterization of a New Wheat-Thinopyrum intermedium Translocation Line with Resistance to Powdery Mildew and Stripe Rust. Zhan, Haixian,Li, Guangrong,Pan, Zhihui,Yang, Zujun,Zhan, Haixian,Zhang, Xiaojun,Hu, Jin,Li, Xin,Qiao, Linyi,Guo, Huijuan,Chang, Zhijian,Jia, Juqing,Chang, Zhijian. 2015

[20]Effects of inter-culture, arabinogalactan proteins, and hydrogen peroxide on the plant regeneration of wheat immature embryos. Zhang Wei,Wang Xin-min,Yin Gui-xiang,Wang Ke,Du Li-pu,Xiao Le-le,Ye Xing-guo,Fan Rong. 2015

作者其他论文 更多>>