Enantioseparation of Imazalil and Monitoring of Its Enantioselective Degradation in Apples and Soils Using Ultrahigh-Performance Liquid Chromatography Tandem Mass Spectrometry

文献类型: 外文期刊

第一作者: Li, Runan

作者: Li, Runan;Dong, Fengshou;Xu, Jun;Liu, Xingang;Wu, Xiaohu;Pan, Xinglu;Tao, Yan;Chen, Zenglong;Zheng, Yongquan

作者机构:

关键词: imazalil;enantioselectivity;apple;field soil;ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS)

期刊名称:JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY ( 影响因子:5.279; 五年影响因子:5.269 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Imazalil is a widely used systemic chiral fungicide that is still being employed as a racemic mixture without distinguishing the difference between enantiomers, which often leads to its inaccurate risk assessment. In this study, a robust and highly sensitive chiral separation method was developed for imazalil enantiomers by ultrahigh-performance liquid chromatography tandem mass spectrometry and was further applied to study the degradation dynamics of imazalil enantiomers in apples and field soils at three sites in China. The baseline enantioseparation for imazalil was achieved within 3.5 min on a Lux Cellulose-2 (CCMPC) column with acetonitrile (ACN)/water (65:35, v/v) with a mobile phase at 0.5 mL/min flow rate and a column temperature of 20 degrees C. The limit of quantitation (LOQ) for each enantiomer was <0.60 mu g/kg, with a baseline resolution of approximately 1.75. The research showed that (S)-(+)-imazalil degraded more rapidly than (R)-(-)-imazalil in Gala apples, whereas (R)-()-imazalil preferentially degraded in Golden Delicious apples. No significant enantioselectivity was observed in OBIR-2T-47 apples and field soils from the three sites. Results of this study provide useful references for risk assessment and the rational use of imazalil in further agricultural produce practice.

分类号: R15`S

  • 相关文献

[1]Studies of enantiomeric degradation of the triazole fungicide hexaconazole in tomato, cucumber, and field soil by chiral liquid chromatography-tandem mass spectrometry. Dong, Fengshou,Liu, Xingang,Xu, Jun,Chen, Xiu,Han, Yongtao,Liang, Xuyang,Zheng, Yongquan.

[2]Detoxification of diphenyl ether herbicide lactofen by Bacillus sp Za and enantioselective characteristics of an esterase gene lacE. Zhang, Jing,Lu, Luyao,Chen, Feng,Chen, Lingling,Huang, Xing,Zhang, Jing,Yin, Jingang. 2018

[3]Evaluating the enantioselective degradation and novel metabolites following a single oral dose of metalaxyl in mice. Zhang, Ping,Zhu, Wentao,Wang, Dezhen,Wang, Xinru,Wang, Yao,Zhou, Zhiqiang,Qiu, Jing.

[4]Chiral bioaccumulation behavior of tebuconazole in the zebrafish (Danio rerio). Liu, Na,Dong, Fengshou,Xu, Jun,Liu, Xingang,Zheng, Yangquan.

[5]Enantioselective metabolism and enantiomerization of benalaxyl in mice. Wang, Xinru,Wang, Xinru,Zhu, Wentao,Wang, Dezhen,Zhou, Zhiqiang,Qiu, Jing.

[6]The fate and enantioselective behavior of zoxamide during wine-making process. Dong, Fengshou,Xu, Jun,Liu, Xingang,Wu, Xiaohu,Zheng, Yongquan,Liu, Na,Cheng, Youpu,Chen, Zenglong. 2018

[7]Enantioselective effects of metalaxyl on soil enzyme activity. Yue, Heng,Fang, Song,Zhang, Yizhi,Ning, Yang,Yu, Weisong,Kong, Fanyu,Qiu, Jun,Yue, Heng,Fang, Song,Zhang, Yizhi,Ning, Yang,Yu, Weisong,Kong, Fanyu,Qiu, Jun.

[8]Simultaneous enantioselective determination of triazole fungicides in soil and water by chiral liquid chromatography/tandem mass spectrometry. Dong, Fengshou,Liu, Xingang,Xu, Jun,Li, Jing,Kong, Zhiqiang,Chen, Xiu,Liang, Xuyang,Zheng, Yongquan.

[9]Simultaneous enantioselective determination of fenbuconazole and its main metabolites in soil and water by chiral liquid chromatography/tandem mass spectrometry. Dong, Fengshou,Liu, Xingang,Xu, Jun,Li, Jing,Kong, Zhiqiang,Chen, Xiu,Zheng, Yongquan,Song, Wencheng,Wang, Yunhao.

[10]Development of a multi-residue enantiomeric analysis method for 9 pesticides in soil and water by chiral liquid chromatography/tandem mass spectrometry. Dong, Fengshou,Liu, Xingang,Xu, Jun,Chen, Xiu,Han, Yongtao,Liang, Xuyang,Zheng, Yongquan.

[11]Enantioselective separation and transformation of metalaxyl and its major metabolite metalaxyl acid in tomato and cucumber. Dong, Fengshou,Liu, Xingang,Xu, Jun,Chen, Xiu,Han, Yongtao,Cheng, Youpu,Zheng, Yongquan,Jian, Qiu.

[12]Enantioselectivity in tebuconazole and myclobutanil non-target toxicity and degradation in soils. Dong, Fengshou,Liu, Xingang,Xu, Jun,Han, Yongtao,Zheng, Yongquan.

[13]Different Enantioselective Degradation of Pyraclofos in Soils. Zhang, Hu,Qian, Mingrong,Xu, Yuxin,Yu, Man,Xiao, Hua,Zhuang, Shulin.

[14]Enantioselective Degradation of Tebuconazole in Wheat and Soil under Open Field Conditions. Ye, Xiaolan,Peng, Anguo,Peng, Anguo,Qiu, Jing,Chai, Tingting,Zhao, Hualin,Ge, Xinghua. 2013

[15]Stereoselective determination of famoxadone enantiomers with HPLC-MS/MS and evaluation of their dissipation process in spinach. Qian, Mingrong,Wu, Liqin,Zhang, Hu,Li, Rui,Wang, Xiangyun,Chen, Zhimin,Wang, Jingwen.

[16]Analysis of Tebuconazole and Tetraconazole Enantiomers by Chiral HPLC-MS/MS and Application to Measure Enantioselective Degradation in Strawberries. Zhang, Hu,Wang, Minghua,Zhang, Hu,Qian, Mingrong,Wang, Xinquan,Wang, Xiangyun,Xu, Hao,Qi, Peipei,Wang, Qiang.

[17]Enantioselective developmental toxicity and immunotoxicity of pyraclofos toward zebrafish (Danio rerio). Zhuang, Shulin,Zhang, Zhisheng,Zhang, Wenjing,Bao, Lingling,Zhuang, Shulin,Zhang, Wenjing,Bao, Lingling,Xu, Chao,Zhang, Hu.

[18]Enantioselective determination of triazole fungicide tebuconazole in vegetables, fruits, soil and water by chiral liquid chromatography/tandem mass spectrometry. Dong, Fengshou,Liu, Xingang,Xu, Jun,Li, Jing,Kong, Zhiqiang,Chen, Xiu,Zheng, Yongquan.

[19]Enantioselective Dissipation of Acephate and Its Metabolite, Methamidophos, during Tea Cultivation, Manufacturing, and Infusion. Pan, Rong,Chen, Hongping,Wang, Chen,Wang, Qinghua,Jiang, Ying,Liu, Xin,Pan, Rong,Chen, Hongping,Wang, Chen,Wang, Qinghua,Jiang, Ying,Liu, Xin.

[20]Residue Analysis and Degradation Studies of Fenbuconazole and Myclobutanil in Strawberry by Chiral High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Zhang, Hu,Wang, Xinquan,Qian, Mingrong,Wang, Xiangyun,Xu, Hao,Xu, Mingfei,Wang, Qiang.

作者其他论文 更多>>