Effect of silicon fertilizers on cadmium in rice (Oryza sativa) tissue at tillering stage

文献类型: 外文期刊

第一作者: Ji, Xionghui

作者: Ji, Xionghui;Liu, Saihua;Juan, Huang;Bocharnikova, Elena A.;Matichenkov, Vladimir V.

作者机构:

关键词: Apoplast;Cadmium;Rice;Si fertilizer;Symplast

期刊名称:ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH ( 影响因子:4.223; 五年影响因子:4.306 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Silicon has been found to enhance the plants' tolerance to heavy metal stress. In a field study, the effect of different types of Si-rich soil amendments (slag, ground slag, and diatomaceous earth) and fertilizers (activated slag, ground activated slag, and commercial Si fertilizer) on the distribution of soluble and insoluble forms of Cd in the rice plant organs grown on long-term cultivated paddy soil contaminated with Cd (central part of Hunan Province, China) was investigated. The soluble Si and Cd were tested in the apoplast and symplast of the roots, stems, and leaves of rice at a tillering stage. The Si-rich materials increased rice biomass by up to 15.5% and reduced the total leaf Cd by 8.5 to 21.9%. Commercial Si fertilizer was the most effective. Three main locations of the most active Si-Cd interactions were distinguished in the soil-plant system: soil, where monosilicic acid affords adsorption and fixation of the bioavailable Cd and root apoplast and apoplast above roots, where monosilicic acid can precipitate Cd. The transport of Cd to stems and leaves and the mobility of Cd in the soil depend on the content of monosilicic acid in the system.

分类号: X5`X

  • 相关文献

[1]Distribution Characteristics of Soil Cadmium in Different Textured Paddy Soil Profiles and Its Relevance with Cadmium Uptake by Crops. Wang Zheng-yin,Qin Yu-sheng,Zhan Shao-jun,Yu Hua,Tu Shi-hua. 2013

[2]Assessment of Homogeneity and Minimum Sample Mass for Cadmium Analysis in Powdered Certified Reference Materials and Real Rice Samples by Solid Sampling Electrothermal Vaporization Atomic Fluorescence Spectrometry. Mao, Xuefei,Huang, Yatao,Zhang, Lihua,Tang, Xiaoyan,Zhou, Jian,Qian, Yongzhong,Wang, Min,Mao, Xuefei,Huang, Yatao,Zhang, Lihua,Tang, Xiaoyan,Zhou, Jian,Qian, Yongzhong,Wang, Min,Liu, Jixin,Feng, Li.

[3]Increasing CO2 differentially affects essential and non-essential amino acid concentration of rice grains grown in cadmium-contaminated soils. Wu, Huibin,Wu, Huibin,Song, Zhengguo,Wang, Xiao,Liu, Zhongqi,Tang, Shirong.

[4]Heavy metal contaminations in soil-rice system: source identification in relation to a sulfur-rich coal burning power plant in Northern Guangdong Province, China. Wang, Xiangqin,Liu Chuanping,Li, Fangbai,Xu, Xianghua,Lv, Yahui,Zeng, Xiaoduo.

[5]Cadmium fate and tolerance in rice cultivars. Zhang, Jie,Sun, Wanchun,Li, Zhaojun,Liang, Yongchao,Zhang, Jie,Song, Alin,Liang, Yongchao.

[6]Effect of water management on cadmium and arsenic accumulation by rice (Oryza sativa L.) with different metal accumulation capacities. Hu, Pengjie,Li, Zhu,Yuan, Cheng,Huang, Jiexue,Huang, Yujuan,Luo, Yongming,Wu, Longhua,Ouyang, Younan,Luo, Yongming,Christie, Peter. 2013

[7]Can liming reduce cadmium (Cd) accumulation in rice (Oryza sativa) in slightly acidic soils? A contradictory dynamic equilibrium between Cd uptake capacity of roots and Cd immobilisation in soils. Yang, Yongjie,Chen, Jiangmin,Huang, Qina,Tang, Shaoqing,Hu, Peisong,Shao, Guosheng,Chen, Jiangmin,Wang, Jianlong. 2018

[8]Comparative proteomic analysis provides new insights into cadmium accumulation in rice grain under cadmium stress. Xue, Dawei,Deng, Xiangxiong,Zhang, Xiaoqin,Xu, Xiangbin,Qian, Qian,Xue, Dawei,Hu, Jiang,Zeng, Dali,Guo, Longbiao,Qian, Qian,Jiang, Hua,Wang, Hua. 2014

[9]Excessive nitrate enhances cadmium (Cd) uptake by up-regulating the expression of OsIRT1 in rice (Oryza sativa). Yang, Yongjie,Fu, Guanfu,Chen, Tingting,Tao, Longxing,Xiong, Jie,Chen, Ruijie,Xiong, Jie,Chen, Ruijie.

[10]Distribution of selenium and cadmium in soil-rice system of selenium-rich area in Hainan, China. Wang, Dengfeng,Wei, Zhiyuan,Qi, Zhiping,Tang, Shumei. 2014

[11]Iron nutrition affects cadmium accumulation and toxicity in rice plants. Shao, Guosheng,Chen, Mingxue,Wang, Weixia,Mon, Renxiang,Zhang, Guoping.

[12]Measuring the damage of heavy metal cadmium in rice seedlings by SRAP analysis combined with physiological and biochemical parameters. Zhang, Xiaoqin,Chen, Huinan,Lu, Wenyi,Pan, Jiangjie,Qian, Qian,Xue, Dawei,Jiang, Hua,Qian, Qian.

[13]Robust method for the analysis of phytochelatins in rice by high-performance liquid chromatography coupled with electrospray tandem mass spectrometry based on polymeric column materials. Yu, Shasha,Bian, Yingfang,Zhou, Rong,Mou, Renxiang,Chen, Mingxue,Cao, Zhaoyun.

[14]Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Guo, B.,Liang, Y. C.,Zhu, Y. G.,Zhao, F. J..

[15]Periphyton growth reduces cadmium but enhances arsenic accumulation in rice (Oryza sativa) seedlings from contaminated soil. Shi, Gao Ling,Ma, Hong Xiang,Lu, Hai Ying,Liu, Jun Zhuo,Wu, Yong Hong,Lou, Lai Qing,Tang, Xian Jin.

[16]Identification of quantitative trait loci for cadmium accumulation and distribution in rice (Oryza sativa). Yan, Yong-Feng,Lestari, Puji,Lee, Kyu-Jong,Kim, Moon Young,Lee, Suk-Ha,Lee, Byun-Woo,Yan, Yong-Feng,Lee, Kyu-Jong,Kim, Moon Young,Lee, Suk-Ha,Lee, Byun-Woo,Yan, Yong-Feng,Lestari, Puji.

[17]Expression of sulfur uptake assimilation-related genes in response to cadmium, bensulfuron-methyl and their co-contamination in rice roots. Zhou, Jian,Wang, Zegang,Huang, Zhiwei,Han, Zhuo,Ge, Cailin,Lu, Chao,Zhang, Jianfeng,Jiang, Huimin,Yang, Juncheng.

[18]Expression of an apoplast-localized BURP-domain protein from soybean (GmRD22) enhances tolerance towards abiotic stress. Wang, Hongmei,Zhou, Liang,Cheung, Ming-Yan,Wong, Fuk-Ling,Phang, Tsui-Hung,Lam, Hon-Ming,Wang, Hongmei,Zhou, Liang,Cheung, Ming-Yan,Wong, Fuk-Ling,Phang, Tsui-Hung,Lam, Hon-Ming,Fu, Yaping,Sun, Zongxiu. 2012

[19]Cadmium accumulation characteristics of the winter farmland weeds Cardamine hirsuta Linn. and Gnaphalium affine D. Don. Liao, Ming'an,Mei, Luoyin,Shi, Jun,Liu, Qihua. 2014

[20]INTERCROPPING DIFFERENT VARIETIES OF RADISH CAN INCREASE CADMIUM ACCUMULATION IN RADISH. Liao, Ming'an,Mei, Luoyin,Liu, Qihua,Shi, Jun,Sun, Jinlong.

作者其他论文 更多>>