Molecular cloning and gene/protein expression of FAT/CD36 from grass carp (Ctenopharyngodon idella) and the regulation of its expression by dietary energy

文献类型: 外文期刊

第一作者: Tian, Juan

作者: Tian, Juan;Liu, Wei;Wu, Fan;Yu, Lijuan;Lu, Xing;Yang, Chang-Geng;Jiang, Ming;Wen, Hua;Tian, Juan;Jiang, Ming;Gao, Weihua

作者机构:

关键词: Fatty acid translocase;Cluster of differentiation 36;Grass carp;Dietary energy;Molecular cloning

期刊名称:FISH PHYSIOLOGY AND BIOCHEMISTRY ( 影响因子:2.794; 五年影响因子:2.876 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Fatty acid translocase/cluster of differentiation 36 (FAT/CD36) functions as a membrane long-chain fatty acid transporter in various tissues in land animals. Not much is known about the CD36 molecule in teleost fish. Therefore, we studied CD36 in grass carp (Ctenopharyngodon idella, ciCD36). The full-length complementary DNA sequence of ciCD36 was 1976 bp, with an ORF of 468 amino acids, which had high sequence similarity to the CD36 of common carp. The messenger RNA (mRNA) expression of ciCD36 was high in the intestine, heart, liver, visceral tissue, and brain, but absent in the kidney. The protein expression of ciCD36 was high in the brain, intestine, liver, heart, muscle, eye, visceral tissue, gonad, and gill, but not in the kidney. Four groups of grass carp (16 tanks) were fed three times daily to satiation with 17.2 kJ gross energy/g diet (control, CON), 19.4 kJ gross energy/g diet (more energy supplied by proteins, HP), 19.9 kJ gross energy/g diet (more energy supplied by fat, HF), and 19.1 kJ gross energy/g diet (more energy supplied by carbohydrate, HC) for 11 weeks, respectively. At the end of the feeding experiment, the fish were fasted for 48 h, and the brain, heart, intestine, and liver were sampled and designated as the 0-h samples. The fish were then fed a single meal of the above four diets, and these tissues were collected at 8- and 24-h intervals after refeeding to analyze ciCD36 mRNA and protein expression levels. The results showed that at the transcriptional and translational levels, ciCD36 expression was significantly affected by refeeding time and the different diets (P < 0.05), and the regulation of its transcription in different tissues varied. At the translational level, the protein expression levels decreased in the CON and HC groups, and increased in the HP and HF groups after refeeding. The results indicated that ciCD36 has a modulatory role in the adaptation to dietary high energy in grass carp. Translational regulation might be responsible for the observed variations in ciCD36 expression.

分类号: S9

  • 相关文献

[1]Molecular cloning and expression of grass carp MyoD in yeast Pichia pastoris. Wang, Lixin,Bai, Junjie,Luo, Jianren,Chen, Hong,Ye, Xing,Jian, Qing,Lao, Haihua. 2007

[2]Effect of energy and protein levels on performance, egg quality, and nutrient digestibility of laying pigeons. Bu, Z.,Xie, P.,Fu, S. Y.,Tong, H. B.,Dai, X..

[3]Prepartal dietary energy level affects peripartal bovine blood neutrophil metabolic, antioxidant, and inflammatory gene expression. Zhou, Z.,Riboni, M. Vailati,Khan, M. J.,Graugnard, D. E.,Cardoso, F. C.,Loor, J. J.,Zhou, Z.,Riboni, M. Vailati,Khan, M. J.,Graugnard, D. E.,Cardoso, F. C.,Loor, J. J.,Bu, D. P.,Bu, D. P.,Bu, D. P.,Luo, J..

[4]Dietary Energy Level Affects the Composition of Cecal Microbiota of Starter Pekin Ducklings. Liu, Jun-Qiang,Wang, Yan-Hong,Fang, Xing-Tang,Chen, Hong,Zhang, Chun-Lei,Chen, Guo-Hong,Zhang, Chun-Lei,Xie, Ming,Zhang, Yun-Sheng,Hou, Shui-Sheng. 2018

[5]Determination of flavomycin residue in grass carp by high performance liquid chromatography. Tian Liang-liang,Huang Dong-mei,Shi Yong-fu,Han Feng,Zhou Peng. 2015

[6]Isolation, Identification, and Detection, of the Virulence Factor of Vibrio cholerae in Grass Carp. Teng, Tao,Liang, Liguo,Xie, Jun. 2015

[7]The study of analytical identification on main monomer compounds of spoiled grass carp by high-performance liquid chromatography of quadrupole time of flight mass spectrometry. Zhang, Yousheng,Huang, Jiasi,Liu, Xueming,Cheng, Jingrong,Chen, Zhiyi,Zhang, Yehui. 2017

[8]Effects of processing method and dietary lysine levels on growth performance, feed conversion ratio and body composition of grass carp, Ctenopharyngodon idella. Gan, Lian,Gan, Lian,Liu, Yong-Jian,Tian, Li-Xia,Liu, Fu-Jia,Yang, Hui-Jun,Chen, Yong-Jun,Liang, Gui-Yin,Yue, Yi-Rong. 2015

[9]Respiratory response of grass carp Ctenopharyngodon idellus to dissolved oxygen changes at three acclimation temperatures. Zhao, Zhigang,Xu, Qiyou,Dong, Shuanglin. 2018

[10]Occurrence of Bothriocephalus acheilognathi (Cestoda, Bothriocephallidea) in grass carp Ctenopharyngodon idella in the Changjiang River drainage. Wang Guitang,Wang Guitang,Xi Bingwen,Xie Jun. 2011

[11]The distribution of different virulence grass carp reovirus strains in some neglected tissues. Liang, H. R.,Fu, X. Z.,Li, N. Q.,Liu, L. H.,Lin, Q.,Li, Y. G.,Peng, Y. A.,Huang, Z. B.,Wu, S. Q.,Liang, H. R.,Li, N. Q.,Liu, L. H.,Lin, Q..

[12]Identification and characterization of Bacillus subtilis from grass carp (Ctenopharynodon idellus) for use as probiotic additives in aquatic feed. Guo, Xia,Chen, Dan-Dan,Peng, Kai-Song,Cui, Zheng-Wei,Zhang, Xu-Jie,Li, Shun,Zhang, Yong-An,Guo, Xia,Peng, Kai-Song,Cui, Zheng-Wei,Zhang, Xu-Jie.

[13]Development and efficacy of a novel streptomycin-resistant Flavobacterium johnsoniae vaccine in grass carp (Ctenopharyngodon idella). Li, Ningqiu,Lin, Qiang,Fu, Xiaozhe,Guo, Huizhi,Liu, Lihui,Wu, Shuqin,Li, Ningqiu,Li, Ningqiu,Lin, Qiang,Fu, Xiaozhe,Guo, Huizhi,Liu, Lihui,Wu, Shuqin.

[14]Silymarin inhibits adipogenesis in the adipocytes in grass carp Ctenopharyngodon idellus in vitro and in vivo. Xiao, Peizhen,Yang, Zhou,Sun, Jian,Tian, Jingjing,Chang, Zhiguang,Li, Xuexian,Ji, Hong,Zhang, Baotong,Ye, Yuantu,Yu, Ermeng,Xie, Jun.

[15]Effect of heat stress and recovery on viability, oxidative damage, and heat shock protein expression in hepatic cells of grass carp (Ctenopharyngodon idellus). Cui, Yanting,Liu, Bo,Xie, Jun,Xu, Pao,Habte-Tsion, H-Michael,Zhang, Yuanyuan,Cui, Yanting,Liu, Bo,Xie, Jun,Xu, Pao,Habte-Tsion, H-Michael,Zhang, Yuanyuan.

[16]Dietary supplementation of sodium butyrate may benefit growth performance and intestinal function in juvenile grass carp (Ctenopharyngodon idellus). Liu, Mengmei,Guo, Wei,Wu, Fan,Qu, Qicai,Tan, Qingsong,Gong, Wangbao.

[17]Cytotoxic effects and apoptosis induction of enrofloxacin in hepatic cell line of grass carp (Ctenopharyngodon idellus). Liu, Bo,Ge, Xianping,Xie, Jun,Xu, Pao,Liu, Bo,Cui, Yanting,Ge, Xianping,Xie, Jun,Xu, Pao,Brown, Paul B..

[18]Effect of Ultrastructure on Changes of Textural Characteristics between Crisp Grass Carp (Ctenopharyngodon Idellus C.Et V) and Grass Carp (Ctenopharyngodon Idellus) Inducing Heating Treatment. Lin, Wan-Ling,Yang, Xian-Qing,Li, Lai-Hao,Hao, Shu-Xian,Wang, Jin-Xu,Huang, Hui,Wei, Ya,Wu, Yan-Yan.

[19]Oral delivery of Bacillus subtilis spores expressing cysteine protease of Clonorchis sinensis to grass carp (Ctenopharyngodon idellus): Induces immune responses and has no damage on liver and intestine function. Tang, Zeli,Sun, Hengchang,Chen, TingJin,Lin, Zhipeng,Jiang, Hongye,Zhou, Xinyi,Ren, Pengli,Yu, Jinyun,Li, Xuerong,Xu, Jin,Huang, Yan,Yu, Xinbing,Tang, Zeli,Sun, Hengchang,Chen, TingJin,Lin, Zhipeng,Jiang, Hongye,Zhou, Xinyi,Ren, Pengli,Yu, Jinyun,Li, Xuerong,Xu, Jin,Huang, Yan,Yu, Xinbing,Tang, Zeli,Sun, Hengchang,Chen, TingJin,Lin, Zhipeng,Jiang, Hongye,Zhou, Xinyi,Ren, Pengli,Yu, Jinyun,Li, Xuerong,Xu, Jin,Huang, Yan,Yu, Xinbing,Shi, Cunbin,Pan, Houjun,Chang, Ouqin.

[20]Genome-wide identification and characterization of conserved and novel microRNAs in grass carp (Ctenopharyngodon idella) by deep sequencing. Gong, Wangbao,Xie, Jun,Wang, Guangjun,Yu, Deguang,Huang, Yong,Sun, Xihong.

作者其他论文 更多>>