Combined effect of crude fat content and initial substrate concentration on batch anaerobic digestion characteristics of food waste

文献类型: 外文期刊

第一作者: Zhang, Wanqin

作者: Zhang, Wanqin;Dong, Hongmin;Zhang, Wanqin;Li, Xin;Dong, Renjie;Lang, Qianqian;Fang, Ming;Bah, Hamidou

作者机构:

关键词: Food waste;Anaerobic digestion;Crude fat content;Initial substrate concentration;Kinetic study

期刊名称:BIORESOURCE TECHNOLOGY ( 影响因子:9.642; 五年影响因子:9.237 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The mesophilic anaerobic digestion (AD) characteristics of food waste (FW) with different crude fat (CF) contents and four initial substrate concentrations (4, 6, 8, and 10 gVS/L) were investigated. The maximum methane yields of FW with CF contents of 15%, 20%, 25%, 30%, and 35% were 565.0, 580.2, 606.0, 630.2 and 573.0 mL CH4/gVS(added), respectively. An acidification trend with a drop in pH (<6.80) and increase in the volatile fatty acids/total inorganic carbon (VFAs/TIC) ratio (>0.4) were found for CF contents of 30% (10 gVS/L) and 35% (8 and 10 gVS/L). A 35% CF content in FW led to decrease in the first-order degradation constant of approximately by 40%. The modified Gompertz model showed that the lag phase (lambda) was prolonged from 0.4 to 7.1 days when the CF content in FW and initial substrate concentration were increased to 35% and 10 gVS/L. (C) 2017 Elsevier Ltd. All rights reserved.

分类号: Q

  • 相关文献

[1]Influence of Organic Loading Rate on the Performance of a Two-Phase Pressurized Biofilm (TPB) System Treating Food Waste. Li, Yeqing,Yan, Fang,Liu, Hong,Wang, Yafei,Jiang, Hao,Qian, Mingyu,Zhou, Hongjun,Liu, Hong,Nie, Hong,Qian, Mingyu. 2017

[2]Adaption of microbial community during the start-up stage of a thermophilic anaerobic digester treating food waste. Wang, Xing,Deng, Ya-Yue,Li, Zheng-Wei,Li, Qiang,Qin, Han,Chen, Jing-Tao,He, Ming-Xiong,Zhang, Min,Hu, Guo-Quan,Yin, Xiao-Bo,Wang, Xing,Li, Zheng-Wei,Chen, Jing-Tao,He, Xiao-Lan. 2016

[3]Ethanol prefermentation of food waste in sequencing batch methane fermentation for improved buffering capacity and microbial community analysis. Yu, Miao,Wu, Chuanfu,Wang, Qunhui,Ren, Yuanyuan,Sun, Xiaohong,Li, Yu-You. 2018

[4]Kinetics of Lactic Acid Fermentation on Food Waste by Lactobacillus bulgaricus. Wang, Min,Qiu, Tianlei,Sun, Xiaohong,Han, Meilin,Wang, Xuming,Xu, Zhijun. 2010

[5]Environmental mercury concentrations in cultured low-trophic-level fish using food waste-based diets. Cheng, Zhang,Wong, Ming Hung,Cheng, Zhang,Man, Yu Bon,Wong, Ming Hung,Man, Yu Bon,Wong, Ming Hung,Cheng, Zhang,Mo, Wing Yin,Man, Yu Bon,Lam, Cheung Lung,Choi, Wai Ming,Wong, Ming Hung,Nie, Xiang Ping,Liu, Yi Hui.

[6]Application of food waste based diets in polyculture of low trophic level fish: Effects on fish growth, water quality and plankton density. Mo, Wing Yin,Cheng, Zhang,Choi, Wai Ming,Man, Yu Bon,Wong, Ming Hung,Mo, Wing Yin,Cheng, Zhang,Choi, Wai Ming,Man, Yu Bon,Wong, Ming Hung,Man, Yu Bon,Wong, Ming Hung,Liu, Yihui.

[7]SOCIAL-OPTIMAL HOUSEHOLD FOOD WASTE: TAXES AND GOVERNMENT INCENTIVES. Katare, Bhagyashree,Serebrennikov, Dmytro,Wang, H. Holly,Katare, Bhagyashree,Serebrennikov, Dmytro,Wang, H. Holly,Wetzstein, Michael.

[8]Food packing: A case study of dining out in Beijing. Wang Yu,Xu Shi-wei,Yu Wen,Abdul-gafar, Ahmed,Xu Shi-wei,Yu Wen,Xu Shi-wei,Yu Wen,Liu Xiao-jie,Zhang Dan,Gao Li-wei,Cao Xiao-chang,Liu Yao,Bai Jun-fei. 2016

[9]Open fermentative production of fuel ethanol from food waste by an acid-tolerant mutant strain of Zymomonas mobilis. Ma, Kedong,Ruan, Zhiyong,Shui, Zongxia,Wang, Yanwei,Hu, Guoquan,He, Mingxiong.

[10]Replacing fish meal by food waste in feed pellets to culture lower trophic level fish, containing acceptable levels of organochlorine pesticides: Health risk assessments. Cheng, Zhang,Mo, Wing-Yin,Man, Yu-Bon,Wong, Ming-Hung,Cheng, Zhang,Mo, Wing-Yin,Man, Yu-Bon,Wong, Ming-Hung,Cheng, Zhang,Man, Yu-Bon,Wong, Ming-Hung,Nie, Xiang-Ping,Li, Kai-Bing.

[11]Kinetics and thermodynamics of glucoamylase inhibition by lactate during fermentable sugar production from food waste. Wang, Qun Hui,Liu, Ying Ying,Ma, Hong Zhi,Wang, Xiao Qiang,Wang, Xu Ming.

[12]Enhancement of L-lactic acid production via synergism in open co-fermentation of Sophora flavescens residues and food waste. Zheng, Jin,Gao, Ming,Wang, Qunhui,Wang, Juan,Chang, Qiang,Zheng, Jin,Gao, Ming,Wang, Qunhui,Sun, Xiaohong,Tashiro, Yukihiro,Tashiro, Yukihiro.

[13]The use of food waste-based diets and Napier grass to culture grass carp: growth performance and contaminants contained in cultured fish. Cheng, Zhang,Cheng, Zhang,Mo, Wing-Yin,Choi, Wai-Ming,Man, Yu-Bon,Wong, Ming-Hung,Cheng, Zhang,Mo, Wing-Yin,Choi, Wai-Ming,Man, Yu-Bon,Wong, Ming-Hung,Nie, Xiang-Ping,Li, Kai-Bing,Wong, Ming-Hung.

[14]Enhancing anaerobic digestion of cotton stalk by pretreatment with a microbial consortium (MC1). Xufeng Yuan,Lei Ma,Boting Wen,Dayun Zhou,Meng Kuang,Weihua Yang,Zongjun Cui.

[15]Alkaline Pretreatment of Banana Stems for Methane Generation: Effects of Temperature and Physicochemical Changes. Chen, Xue Lan,Han, Ya Xin,Zhang, Cheng Ming,Jiang, Li,Zhang, Lei,Li, Ji Hong,Li, Shi Zhong,Zhang, Cheng Ming,Feng, Guang Qiang,Zhao, Ming Xing,Yue, Rui Xue,Yue, Rui Xue,Li, Yan Fei,Han, Ya Xin,Jiang, Li,Zhang, Lei,Li, Ji Hong,Li, Shi Zhong. 2017

[16]A bibliometric analysis of anaerobic digestion for methane research during the period 1994-2011. Wang, Li-Hong,Wang, Qunhui,Zhang, Xiao,Cai, Weiwei,Wang, Li-Hong,Sun, Xiaohong. 2013

[17]Impact of roxarsone on the UASB reactor performance and its degradation. Shui, Mengchuan,Tang, Rui,Yuan, Shoujun,Wang, Wei,Hu, Zhenhu,Ji, Feng,Zhan, Xinmin,Wang, Wei,Hu, Zhenhu. 2016

[18]Performance evaluation of a novel anaerobic digestion operation process for treating high-solids content chicken manure: Effect of reduction of the hydraulic retention time at a constant organic loading rate. Zhang, Wanqin,Dong, Hongmin,Zhang, Wanqin,Dong, Renjie,Lang, Qianqian,Pan, Zhendong,Jiang, Yingqing,Liebetrau, Jan,Nelles, Michael.

[19]Effects of anaerobic digestion on chlortetracycline and oxytetracycline degradation efficiency for swine manure. Yin, Fubin,Dong, Hongmin,Tao, Xiuping,Chen, Yongxing,Ji, Chao.

[20]Using Contaminated Plants Involved in Phytoremediation for Anaerobic Digestion. Cao, Zewei,Wang, Shengxiao,Shen, Zhenguo,Chen, Yahua,wang, Ting,Chang, Zhizhou,Shen, Zhenguo,Chen, Yahua,Shen, Zhenguo,Chen, Yahua.

作者其他论文 更多>>