Formation of (E)-nerolidol in tea (Camellia sinensis) leaves exposed to multiple stresses during tea manufacturing

文献类型: 外文期刊

第一作者: Zhou, Ying

作者: Zhou, Ying;Zeng, Lanting;Liu, Xiaoyu;Gui, Jiadong;Mei, Xin;Fu, Xiumin;Yang, Ziyin;Zhou, Ying;Zeng, Lanting;Liu, Xiaoyu;Gui, Jiadong;Mei, Xin;Fu, Xiumin;Yang, Ziyin;Zeng, Lanting;Liu, Xiaoyu;Gui, Jiadong;Yang, Ziyin;Dong, Fang;Tang, Jingchi;Tang, Jingchi;Zhang, Lingyun

作者机构:

关键词: Aroma;Camellia sinensis;Nerolidol;Tea;Terpene synthase;Volatile

期刊名称:FOOD CHEMISTRY ( 影响因子:7.514; 五年影响因子:7.516 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: (E)-Nerolidol is a volatile sesquiterpene that contributes to the floral aroma of teas (Camellia sinensis). The unique manufacturing process for oolong tea involves multiple stresses, resulting in a high content of (E)-nerolidol, which is not known to form in tea leaves. This study aimed to determine the formation mechanism of (E)-nerolidol in tea exposed to multiple stresses during tea manufacture. C. sinensis (E)-nerolidol synthase (CsNES) recombinant protein, found in the cytosol, was found to transform farnesyl diphosphate into (E)-nerolidol. CsNES was highly expressed during the oolong tea turn over process, resulting in (E)-nerolidol accumulation. Continuous mechanical damage, simulating the turn over process, significantly enhanced CsNES expression level and (E)-nerolidol content. The combination of low temperature stress and mechanical damage had a synergistic effect on (E)-nerolidol formation. This is the first evidence of (E)-nerolidol formation mechanism in tea leaves and a characteristic example of plant volatile formation in response to dual stresses. (C) 2017 Elsevier Ltd. All rights reserved.

分类号: TS2`TS201.2

  • 相关文献

[1]Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma. Zeng, Lanting,Zhou, Ying,Fu, Xiumin,Mei, Xin,Cheng, Sihua,Gui, Jiadong,Yang, Ziyin,Zeng, Lanting,Zhou, Ying,Fu, Xiumin,Mei, Xin,Cheng, Sihua,Gui, Jiadong,Yang, Ziyin,Zeng, Lanting,Cheng, Sihua,Gui, Jiadong,Yang, Ziyin,Dong, Fang,Tang, Jinchi,Tang, Jinchi,Ma, Shengzhou. 2017

[2]Formation and emission of linalool in tea (Camellia sinensis) leaves infested by tea green leafhopper (Empoasca (Matsumurasca) onukii Matsuda). Mei, Xin,Liu, Xiaoyu,Zhou, Ying,Wang, Xiaoqin,Zeng, Lanting,Fu, Xiumin,Yang, Ziyin,Mei, Xin,Liu, Xiaoyu,Zhou, Ying,Wang, Xiaoqin,Zeng, Lanting,Fu, Xiumin,Yang, Ziyin,Liu, Xiaoyu,Wang, Xiaoqin,Zeng, Lanting,Yang, Ziyin,Li, Jianlong,Tang, Jinchi,Li, Jianlong,Tang, Jinchi,Dong, Fang. 2017

[3]alpha-Farnesene and ocimene induce metabolite changes by volatile signaling in neighboring tea (Camellia sinensis) plants. Zeng, Lanting,Liao, Yinyin,Zhou, Ying,Yang, Ziyin,Zeng, Lanting,Liao, Yinyin,Zhou, Ying,Yang, Ziyin,Zeng, Lanting,Liao, Yinyin,Yang, Ziyin,Li, Jianlong,Tang, Jinchi,Li, Jianlong,Tang, Jinchi,Dong, Fang.

[4]Functional characterizations of beta-glucosidases involved in aroma compound formation in tea (Camellia sinensis). Zhou, Ying,Zeng, Lanting,Gui, Jiadong,Liao, Yinyin,Yang, Ziyin,Zhou, Ying,Zeng, Lanting,Gui, Jiadong,Liao, Yinyin,Yang, Ziyin,Zeng, Lanting,Gui, Jiadong,Yang, Ziyin,Li, Jianlong,Tang, Jingchi,Li, Jianlong,Tang, Jingchi,Meng, Qing,Dong, Fang.

[5]Molecular cloning and expression analysis of a putative sesquiterpene synthase gene from tea plant (Camellia sinensis). Fu, Jian-yu.

[6]Cloning and characterization of an S-RNase gene in Camellia sinensis. Zhang, Cheng-Cai,Tan, Li-Qiang,Wang, Li-Yuan,Wei, Kang,Wu, Li-Yun,Zhang, Fen,Cheng, Hao,Zhang, Cheng-Cai,Tan, Li-Qiang,Wang, Li-Yuan,Wei, Kang,Wu, Li-Yun,Zhang, Fen,Cheng, Hao,Zhang, Cheng-Cai,Ni, De-Jiang,Tan, Li-Qiang.

[7]Transcriptome analysis reveals self-incompatibility in the tea plant (Camellia sinensis) might be under gametophytic control. Zhang, Cheng-Cai,Wang, Li-Yuan,Wei, Kang,Wu, Li-Yun,Li, Hai-Lin,Zhang, Fen,Cheng, Hao,Zhang, Cheng-Cai,Ni, De-Jiang. 2016

[8]Effect of nitrogen form and root-zone pH on growth and nitrogen uptake of tea (Camellia sinensis) plants. Ruan, Jianyun,Gerendas, Joska,Hardter, Rolf,Sattelmacher, Burkhard.

[9]Antioxidant system of tea (Camellia sinensis) leaves in response to phosphorus supply. Chen, Li-Song,Lin, Zheng-He,Chen, Li-Song,Lin, Zheng-He,Chen, Li-Song,Lin, Zheng-He,Chen, Rong-Bing,Zhang, Fang-Zhou. 2012

[10]Characterization of fluoride uptake by roots of tea plants (Camellia sinensis (L.) O. Kuntze). Zhang, Lei,Li, Qiong,Ma, Lifeng,Ruan, Jianyun,Zhang, Lei,Li, Qiong,Ma, Lifeng,Ruan, Jianyun.

[11]Soil microbial biomass and activity in Chinese tea gardens of varying stand age and productivity. Han, Wenyan,Kemmitt, Sarah J.,Brookes, Philip C.. 2007

[12]Variations of rhizosphere bacterial communities in tea (Camellia sinensis L.) continuous cropping soil by high-throughput pyrosequencing approach. Li, Y. C.,Li, Z.,Li, Z. W.,Jiang, Y. H.,Lin, W. X.,Li, Y. C.,Weng, B. Q..

[13]The impact of pH and calcium on the uptake of fluoride by tea plants (Camellia sinensis L.). Ruan, JY,Ma, LF,Shi, YZ,Han, WY. 2004

[14]Genetic diversity and phylogeny of tea plant (Camellia sinensis) and its related species and varieties in the section Thea genus Camellia determined by randomly amplified polymorphic DNA analysis. Chen, L,Yamaguchi, S.

[15]Effects of sunlight exclusion on the profiles of monoterpene biosynthesis and accumulation in grape exocarp and mesocarp. Zhang, Erpeng,Li, Shaohua,Liang, Zhenchang,Fan, Peige,Zhang, Erpeng,Li, Shaohua,Liang, Zhenchang,Fan, Peige,Chai, Fengmei,Chai, Fengmei,Zhang, Haohao. 2017

[16]Genome-wide analysis of terpene synthases in soybean: Functional characterization of GmTPS3. Huang, Fang,Wang, Xia,Wang, Jiao,Yu, Deyue,Liu, Jianyu,Zhang, Man,Zheng, Rui.

[17]Microbial-type terpene synthase genes occur widely in nonseed land plants, but not in seed plants. Jia, Qidong,Chen, Feng,Li, Guanglin,Fu, Jianyu,Chen, Xinlu,Xiong, Wangdan,Chen, Feng,Li, Guanglin,Kollner, Tobias G.,Gershenzon, Jonathan,Fu, Jianyu,Crandall-Stotler, Barbara J.,Bowman, John L.,Weston, David J.,Zhang, Yong,Chen, Li,Xie, Yinlong,Wong, Gane Ka-Shu,Li, Fay-Wei,Rothfels, Carl J.,Larsson, Anders,Graham, Sean W.,Stevenson, Dennis W.,Wong, Gane Ka-Shu,Wong, Gane Ka-Shu.

[18]Chemical compositions and volatile compounds of Tricholoma matsutake from different geographical areas at different stages of maturity. Li, Xiaolin,Zheng, Linyong,Zhang, Li,Yang, Hua,Li, Wanhua,Huang, Wenli,Zheng, Linyong. 2016

[19]Study of Volatile Compound Contents in a Progeny Issued from Cross between 'Camarosa' and 'Benihoppe'. Wang, Guixia,Zhang, Yuntao,Dong, Jing,Zhong, Chuanfei,Chang, Linlin,Wang, Lina. 2011

[20]Identification of plant chemicals attracting and repelling whiteflies. Li, Yaofa,Zhong, Suting,Qin, Yuchuan,Li, Yaofa,Gao, Zhanlin,Dang, Zhihong,Pan, Wenliang,Zhang, Shangqing. 2014

作者其他论文 更多>>