Prediction of pH of fresh chicken breast fillets by VNIR hyperspectral imaging

文献类型: 外文期刊

第一作者: Jia, Beibei

作者: Jia, Beibei;Wang, Wei;Yoon, Seung-Chul;Zhuang, Hong;Li, Chunyang

作者机构:

关键词: Chicken breast fillets;pH;Hyperspectral imaging;Partial least squares regression (PLSR);Competitive adaptive reweighed sampling (CARS)

期刊名称:JOURNAL OF FOOD ENGINEERING ( 影响因子:5.354; 五年影响因子:5.144 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Visible and near-infrared (VNIR) hyperspectral imaging (400-900 nm) was used to evaluate pH of fresh chicken breast fillets (pectoralis major muscle) from the bone (dorsal) side of individual fillets. After the principal component analysis (PCA), a band threshold method was applied to the first principal component (PC1) score image in order to get the region of interest (ROI). Then, the average reflective spectrum of ROI of each image was acquired by inverse PCA transform. Eight pretreatment algorithms were evaluated for partial least squares regression (PLSR) models. The PLSR model with the pretreatment of multiplicative scatter correction followed by second derivative showed the best performance with coefficients of determination for validation (R-v(2)) of 0.87, root mean square error for validation (RMSEv) of 0.16 and the ratio of percentage deviation (RPD) of 2.02. Optimal 20 wavelengths were selected using competitive adaptive reweighed sampling (CARS) method to develop a new multispectral PLSR model, leading to an enhanced result with R-v(2) of 0.94, RMSEv of 0.06 and RPD of 3.55. To assess the performance of the prediction models, new ROIs where pH values were measured using a pH probe, were defined and corresponding mean spectra were used as an independent test set of the new multispectral PLSR model. Coefficients of determination for independent test set (R-q(2)) and root mean square error for independent test set (RMSEp) were 0.73 and 0.29, respectively. The prediction image showing the spatial distribution of the predicted pH values was generated to analyze the spatial context of pH values as well as the overall pH level of each fillet. The results demonstrated that VNIR hyperspectral imaging could be used to predict spatial and global pH values of fresh chicken breast meat. (C) 2017 Published by Elsevier Ltd.

分类号: TS2

  • 相关文献

[1]Qualitative and quantitative detection of honey adulterated with high-fructose corn syrup and maltose syrup by using near-infrared spectroscopy. Ma, Qiang,Wen, Ruizhi,Li, Jiaojuan,Zhang, Xin,Shan, Yang,Su, Donglin. 2017

[2]Identification of seedling cabbages and weeds using hyperspectral imaging. Wei, Deng,Zhao Chunjiang,Xiu, Wang,Huang, Yanbo,Wei, Deng,Zhao Chunjiang,Xiu, Wang,Wei, Deng,Zhao Chunjiang,Xiu, Wang,Wei, Deng,Zhao Chunjiang,Xiu, Wang. 2015

[3]Effectively Predicting Soluble Solids Content in Apple Based on Hyperspectral Imaging. Huang Wen-qian,Li Jiang-bo,Chen Li-ping,Guo Zhi-ming. 2013

[4]Comparative analysis of models for robust and accurate evaluation of soluble solids content in 'Pinggu' peaches by hyperspectral imaging. Chen, Liping. 2017

[5]Detection of Wheat Powdery Mildew by Differentiating Background Factors using Hyperspectral Imaging. Zhang, Dongyan,Zhang, Lifu,Zhang, Dongyan,Wang, Xiu,Zhang, Dongyan,Wang, Xiu,Lin, Fenfang,Huang, Yanbo. 2016

[6]Early Detection of Aspergillus parasiticus Infection in Maize Kernels Using Near-Infrared Hyperspectral Imaging and Multivariate Data Analysis. Zhao, Xin,Wang, Wei,Chu, Xuan,Kimuli, Daniel,Li, Chunyang. 2017

[7]Rapid determination of biogenic amines in cooked beef using hyperspectral imaging with sparse representation algorithm. Yang, Dong,Lu, Anxiang,Wang, Jihua,Yang, Dong,Wang, Jihua,Lu, Anxiang,Ren, Dong,Wang, Jihua,Lu, Anxiang,Wang, Jihua. 2017

[8]Multi-Temporal Hyperspectral and Radar Remote Sensing for Estimating Winter Wheat Biomass in the North China Plain. Hennig, Simon D.,Koppe, Wolfgang,Gnyp, Martin L.,Bareth, Georg,Chen, Xinping,Li, Fei,Miao, Yuxin,Jia, Liangliang. 2012

[9]Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review. Zhang, Baohua,Huang, Wenqian,Li, Jiangbo,Zhao, Chunjiang,Fan, Shuxiang,Wu, Jitao,Zhang, Baohua,Zhao, Chunjiang,Liu, Chengliang. 2014

[10]Measuring the Moisture Content in Maize Kernel Based on Hyperspctral Image of Embryo Region. Tian Xi,Huang Wen-qian,Li Jiang-bo,Fan Shu-xiang,Zhang Bao-hua,Tian Xi,Huang Wen-qian,Li Jiang-bo,Fan Shu-xiang,Zhang Bao-hua,Tian Xi,Huang Wen-qian,Li Jiang-bo,Fan Shu-xiang,Zhang Bao-hua,Tian Xi,Huang Wen-qian,Li Jiang-bo,Fan Shu-xiang,Zhang Bao-hua. 2016

[11]Principles and Applications of Hyperspectral Imaging Technique in Quality and Safety Inspection of Fruits and Vegetables. Zhang Bao-hua,Zhang Bao-hua,Li Jiang-bo,Fan Shu-xiang,Huang Wen-qian,Zhang Chi,Wang Qing-yan,Xiao Guang-dong. 2014

[12]Identification of Wheat Cultivars Based on the Hyperspectral Image of Single Seed. Zhu, Dazhou,Wang, Cheng,Wu, Qiong,Zhao, Chunjiang,Pang, Binshuang,Shan, Fuhua. 2012

[13]HYPERSPECTRAL IMAGE FOR DISCRIMINATING APHID AND APHID DAMAGE REGION OF WINTER WHEAT LEAF. Luo Juhua,Huang Wenjiang,Guan Qingsong,Zhao Jinling,Zhang Jingcheng. 2013

[14]Detection of early bruises on peaches (Amygdalus persica L.) using hyperspectral imaging coupled with improved watershed segmentation algorithm. Li, Jiangbo,Chen, Liping,Huang, Wenqian,Li, Jiangbo,Chen, Liping,Huang, Wenqian,Li, Jiangbo,Chen, Liping,Huang, Wenqian,Li, Jiangbo,Chen, Liping,Huang, Wenqian. 2018

[15]Study on the optimal algorithm prediction of corn leaf component information based on hyperspectral imaging. Wu, Qiong,Xu, Tongyu,Wu, Qiong,Wang, Jihua,Wang, Cheng. 2016

[16]Vertical features of yellow rust infestation on winter wheat using hyperspectral imaging measurements. Zhao, Jinling,Zhang, Dongyan,Huang, Linsheng,Zhang, Qing,Liu, Wenjing,Yang, Hao. 2016

[17]Combination of spectral and textural information of hyperspectral imaging for the prediction of the moisture content and storage time of cooked beef. Yang, Dong,Lu, Anxiang,Wang, Jihua,Yang, Dong,Wang, Jihua,He, Dandan,Lu, Anxiang,Ren, Dong,Wang, Jihua,Lu, Anxiang,Wang, Jihua. 2017

[18]Measurement of Light Penetration Depth through Milk Powder Layer in Raman Hyperspectral Imaging System. Liu Chen,Chen Li-ping,Liu Chen,Wang Qing-yan,Huang Wen-qian,Chen Li-ping,Yang Gui-yan,Wang Xiao-bin,Liu Chen,Wang Qing-yan,Huang Wen-qian,Chen Li-ping,Yang Gui-yan,Wang Xiao-bin,Liu Chen,Wang Qing-yan,Huang Wen-qian,Chen Li-ping,Yang Gui-yan,Wang Xiao-bin. 2017

[19]Recognition of wheat preharvest sprouting based on hyperspectral imaging. Wu, Qiong,Wang, Jihua,Wu, Qiong,Zhu, Dazhou,Wang, Cheng,Ma, Zhihong,Wang, Jihua. 2012

[20]Prediction of soluble solids content of apple using the combination of spectra and textural features of hyperspectral reflectance imaging data. Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi.

作者其他论文 更多>>