Norovirus contamination and the glycosphingolipid biosynthesis pathway in Pacific oyster: A transcriptomics study

文献类型: 外文期刊

第一作者: Ma, Liping

作者: Ma, Liping;Su, Laijin;Liu, Hui;Zhao, Feng;Zhou, Deqing;Ma, Liping;Duan, Delin

作者机构:

关键词: Crassostrea gigas;Norovirus;Transcriptome;Glycosphingolipid biosynthesis pathway

期刊名称:FISH & SHELLFISH IMMUNOLOGY ( 影响因子:4.581; 五年影响因子:4.851 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Noroviruses are the primary pathogens associated with shellfish-borne gastroenteritis outbreaks. These viruses remain stable in oysters, suggesting an active mechanism for virus concentration. In this study, a deep RNA sequencing technique was used to analyze the transcriptome profiles of Pacific oysters at different time points after inoculation with norovirus (GII.4). We obtained a maximum of 65, 294, 698 clean sample reads. When aligned to the reference genome, the average mapping ratio of clean data was approximately 65%. In the samples harvested at 12, 24, and 48 h after contamination, 2,223, 2,990, and 2020 genes, respectively, were differentially expressed in contaminated and non-contaminated oyster digestive tissues, including 500, 1748, and 1039 up-regulated and 1723, 1242, and 981 down-regulated genes, respectively. In particular, FUT2 and B3GNT4, genes encoding the signaling components of glycosphingolipid biosynthesis, were significantly up-regulated in contaminated samples. In addition, we found up-regulation of some immune-and disease-related genes in the MHC I pathway (PA28, HSP 70, HSP90, CANX, BRp57, and CALR) and MHC II pathway (GILT, CTSBLS, RFX, and NFY), although NoVs did not cause diseases in the oysters. We detected two types of HBGA-like molecules with positive-to-negative ratios similar to type A and H1 HBGA-like molecules in digestive tissues that were significantly higher in norovirus-contaminated than in non-contaminated oysters. Thus, our transcriptome data analysis indicated that a human pathogen (GII.4 Norovirus) was likely concentrated in the digestive tissues of oysters via HBGA-like molecules that were synthesized by the glycosphingolipid biosynthesis pathway. The identified differentially expressed genes also provide potential candidates for functional analysis to identify genes involved in the accumulation of noroviruses in oysters. (C) 2017 Elsevier Ltd. All rights reserved.

分类号: S9

  • 相关文献

[1]An efficient method of noroviruses recovery from oysters and clams. Zhou Deqing,Ma Liping,Zhao Feng,Yao Lin,Li Xinguang,Ma Liping,Su Laijin,Li Xinguang. 2013

[2]Variations in retention efficiency of bivalves to different concentrations and organic content of suspended particles. Zhang Jihong,Fang Jianguang,Liang Xingming. 2010

[3]Function of VP2 Protein in the Stability of the Secondary Structure of Virus-like Particles of Genogroup II Norovirus at Different pH Levels: Function of VP2 Protein in the Stability of NoV VLPs. Yao Lin,Li Fengling,Wang Lianzhu,Zhai Yuxiu,Jiang Yanhua. 2014

[4]Emerging and endemic types of Ostreid herpesvirus 1 were detected in bivalves in China. Bai, Changming,Wang, Chongming,Xia, Junyang,Zhang, Shuai,Huang, Jie,Bai, Changming,Wang, Chongming,Huang, Jie,Sun, Hailin.

[5]Development of A Monoclonal Antibody-Coated Immunomagnetic Beads for Separation and Detection of Norovirus (Genogroup II) in Oysters. Yao, Lin,Jiang, Yanhua,Jiang, Wei,Li, Fengling,Zhai, Yuxiu,Wang, Lianzhu. 2013

[6]Growth and food sources of Pacific oyster Crassostrea gigas integrated culture with Sea bass Lateolabrax japonicus in Ailian Bay, China. Jiang, Zengjie,Fang, Jianguang,Mao, Yuze,Wang, Guanghua.

[7]Assessment of the local environmental impact of intensive marine shellfish and seaweed farming-Application of the MOM system in the Sungo Bay, China. Zhang, Jihong,Fang, Jianguang,Wang, Wei,Jiang, Zengjie,Zhang, Jihong,Fang, Jianguang,Wang, Wei,Jiang, Zengjie,Hansen, Pia Kupka.

[8]The presence of Genogroup II Norovirus in Retail Shellfish from Seven Coastal Cities in China. Ma, Li-ping,Zhao, Feng,Yao, Lin,Li, Xin-guang,Zhou, De-qing,Zhang, Rui-ling,Ma, Li-ping.

[9]A collection of 10,096 indica rice full-length cDNAs reveals highly expressed sequence divergence between Oryza sativa indica and japonica subspecies. Liu, Xiaohui,Lu, Tingting,Yu, Shuliang,Li, Ying,Huang, Yuchen,Huang, Tao,Zhang, Lei,Zhu, Jingjie,Zhao, Qiang,Fan, Danlin,Mu, Jie,Shangguan, Yingying,Feng, Qi,Guan, Jianping,Ying, Kai,Zhang, Yu,Lin, Zhixin,Sun, Zongxiu,Qian, Qian,Lu, Yuping,Han, Bin.

[10]Transcriptome analysis of the roots at early and late seedling stages using Illumina paired-end sequencing and development of EST-SSR markers in radish. Wang, Shufen,He, Qiwei,Liu, Xianxian,Xu, Wenling,Li, Libin,Gao, Jianwei,Wang, Fengde,Wang, Xiufeng. 2012

[11]Transcriptome Analysis of Calcium and Hormone-Related Gene Expressions during Different Stages of Peanut Pod Development. Li, Yan,Meng, Jingjing,Yang, Sha,Guo, Feng,Zhang, Jialei,Geng, Yun,Cui, Li,Li, Xinguo,Wan, Shubo. 2017

[12]Transcriptome profiling of peanut gynophores revealed global reprogramming of gene expression during early pod development in darkness. Xia, Han,Zhao, Chuanzhi,Hou, Lei,Li, Aiqin,Zhao, Shuzhen,Bi, Yuping,An, Jing,Wan, Shubo,Wang, Xingjun,Bi, Yuping,Wan, Shubo,Wang, Xingjun,Bi, Yuping,An, Jing,Zhao, Yanxiu,Wang, Xingjun. 2013

[13]Switch on a more efficient pyruvate synthesis pathway based on transcriptome analysis and metabolic evolution. Yang, Maohua,Mu, Tingzhen,Xing, Jianmin,Chen, Ruonan,Zhang, Xiang. 2017

[14]Transcriptome analysis of rosette and folding leaves in Chinese high-throughput RNA sequencing. Wang, Fengde,Li, Libin,Li, Huayin,Liu, Lifeng,Zhang, Yihui,Gao, Jianwei,Wang, Xiaowu. 2012

[15]Transcriptome analysis reveals long noncoding RNAs involved in fiber development in cotton (Gossypium arboreum). Changsong Zou,Qiaolian Wang,Cairui Lu,Wencui Yang,Youping Zhang,Hailiang Cheng,Xiaoxu Feng,Mtawa Andrew Prosper,Guoli Song. 2016

[16]De novo assembly and transcriptome analysis of two contrary tillering mutants to learn the mechanisms of tillers outgrowth in switchgrass (Panicum virgatum L.). Kaijie Xu,Fengli Sun,Guaiqiang Chai,Yongfeng Wang,Lili Shi,Shudong Liu,Yajun Xi. 2015

[17]Global analysis of the Gossypium hirsutum L. Transcriptome during leaf senescence by RNA-Seq. Min Lin,Chaoyou Pang,Shuli Fan,Meizhen Song,Hengling Wei,Shuxun Yu. 2015

[18]PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation. Yang, Zuoren,Zhang, Chaojun,Yang, Xiaojie,Liu, Kun,Wu, Zhixia,Zhang, Xueyan,Zheng, Wu,Liu, Chuanliang,Lu, Lili,Yang, Zhaoen,Qian, Yuyuan,Xu, Zhenzhen,Li, Changfeng,Li, Fuguang,Xun, Qingqing,Li, Jia.

[19]Identification of candidate thermotolerance genes during early seedling stage in upland cotton (Gossypium hirsutum L.) revealed by comparative transcriptome analysis. Peng, Zhen,Cao, Moju,Xu, Jie,Lu, Yanli,Peng, Zhen,He, Shoupu,Gong, Wenfang,Sun, Junling,Pan, Zhaoe,Du, Xiongming,Sun, Gaofei.

[20]Characterization of the global transcriptome for cotton (Gossypium hirsutum L.) anther and development of SSR marker. Xianwen Zhang ,Zhenwei Ye,TiankangWang,Hairong Xiong,Xiaoling Yuan,Zhigang Zhang,Youlu Yuan,Zhi Liu.

作者其他论文 更多>>