Comparative Proteomic Analysis of Posterior Silk Glands of Wild and Domesticated Silkworms Reveals Functional Evolution during Domestication

文献类型: 外文期刊

第一作者: Li, Jian-ying

作者: Li, Jian-ying;Li, Jian-ying;Cai, Fang;Ye, Xiao-gang;Wu, Mei-yu;Zhao, Dan;Jiang, Zhen-dong;You, Zheng-ying;Zhong, Bo-xiong;Liang, Jian-she;Li, Jian-ke;Cai, Fang

作者机构:

关键词: Bombyx mandarina;Bombyx mori;posterior silk gland;domestication;functional evolution;proteomics;label-free quantification;KEGG pathway

期刊名称:JOURNAL OF PROTEOME RESEARCH ( 影响因子:4.466; 五年影响因子:4.352 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The wild silkworm Bombyx mandarina was domesticated to produce silk in China approximately 5000 years ago. Silk production is greatly improved in the domesticated silkworm B. mori, but the molecular basis of the functional evolution of silk gland remains elusive. We performed shotgun proteomics with label-free quantification analysis and identified 1012 and 822 proteins from the posterior silk glands (PSGs) of wild silkworms on the third and fifth days of the fifth instar, respectively, with 128 of these differentially expressed. Bioinformatics analysis revealed that, with the development of the PSG, the up-regulated proteins were mainly involved in the ribosome pathway, similar to what we previously reported for B. mori. Additionally, we screened 50 proteins with differential expression between wild and domesticated silkworms that might be involved in domestication at the two stages. Interestingly, the up-regulated proteins in domesticated compared to wild silkworms were enriched in the ribosome pathway, which is closely related to cell size and translation capacity. Together, these results suggest that functional evolution of the PSG during domestication was driven by reinforcing the advantageous pathways to increase the synthesis efficiency of silk proteins in each cell and thereby improve silk yield.

分类号: Q7`Q51

  • 相关文献

[1]Characterization and profiling of MicroRNAs in posterior silk gland of the silkworm (Bombyx mori). Song, Fei,Wang, Xin,Chen, Chen,Fan, Yangyang,Tang, Shunming,Huang, Jinshan,Guo, Xijie,Shen, Xingjia,Tang, Shunming,Huang, Jinshan,Guo, Xijie,Shen, Xingjia.

[2]Molecular phylogeny of the domesticated silkworm, Bombyx mori, based on the sequences of mitochondrial cytochrome b genes. Li, AL,Zhao, QL,Tang, SM,Zhang, ZF,Pan, SY,Shen, GF.

[3]Complete mitochondrial genome of a hybrid strain of the domesticated silkworm (Qiufeng x Baiyu). Li, Fengbo,Zhang, Huixian,Meng, Zhiqi,Zhang, Huixian,Liu, Peigang,Wang, Yongqiang.

[4]Genetic diversity within Oryza rufipogon germplasms preserved in Chinese field gene banks of wild rice as revealed by microsatellite markers. Zhang, Chi-Hong,Li, Dao-Yuan,Pan, Da-Jian,Jia, Ji-Zeng,Dong, Yu-Shen.

[5]Genomic insights into divergence and dual domestication of cultivated allotetraploid cottons. Lei Fang,Hao Gong,Yan Hu,Chunxiao Liu,Huang, Xuehui,Zhang, Tianzhen,Baoliang Zhou,Tao Huang,Yangkun Wang,Shuqi Chen,David D. Fang,Xiongming Du,Hong Chen,Jiedan Chen,Sen Wang,Qiong Wang,Qun Wan,Bingliang Liu,Mengqiao Pan,Lijing Chang,Huaitong Wu,Gaofu Mei,Dan Xiang,Xinghe Li,Caiping Cai,Xiefei Zhu,Z. Jeffrey Chen,Bin Han,Xiaoya Chen,Wangzhen Guo,Tianzhen Zhang,Xuehui Huang. 2017

[6]Proteomic Analysis of Differences in Fiber Development between Wild and Cultivated Gossypium hirsutum L.. Yuan Qin,Yu, Shuxun,Hengling Wei,Huiru Sun,Pengbo Hao,Hantao Wang,Junji Su,Shuxun Yu.

[7]Characterization of quantitative trait loci for number of primary branches in near-isogenic lines from a cross between the Oryza sativa cultivar 'Hwayeongbyeo' and the wild relative Oryza rufipogon. Ji, Shi-Dong,Xiao, Luo,Lee, Hyun-Sook,Ahn, Sang-Nag,Yuan, Ping-Rong. 2012

[8]Genetic diversity and structure within and between wild and cultivated Saccharina japonica (Laminariales, Phaeophyta) revealed by SSR markers. Liu, Fuli,Yao, Jianting,Wang, Xiuliang,Duan, Delin,Liu, Fuli,Repnikova, Anna,Galanin, Dmitry A.. 2012

[9]Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Gu, Suhai,Su, Ning,Lei, Cailin,Zhang, Xin,Cheng, Zhijun,Guo, Xiuping,Wang, Jiulin,Zhai, Huqu,Gu, Suhai,Su, Ning,Lei, Cailin,Zhang, Xin,Cheng, Zhijun,Guo, Xiuping,Wang, Jiulin,Zhai, Huqu,Wan, Jianmin,Weng, Jianfeng,Wan, Xiangyuan,Gao, He,Guo, Tao,Jiang, Ling. 2008

[10]Selective sweep with significant positive selection serves as the driving force for the differentiation of japonica and indica rice cultivars. Yuan, Yang,Yuan, Yang,Zeng, Shuiyun,Gu, Longjiang,Si, Weina,Zhang, Xiaohui,Tian, Dacheng,Yang, Sihai,Wang, Long,Zhang, Qijun. 2017

[11]Quantitative trait loci underlying domestication and yield-related traits in an Oryza sativa x Oryza rufipogon advanced backcross population. Tan, Lubin,Liu, Fengxia,Wang, Guijuan,Ye, Sheng,Zhu, Zuofeng,Fu, Yongcai,Cai, Hongwei,Sun, Chuanqing,Tan, Lubin,Liu, Fengxia,Wang, Guijuan,Ye, Sheng,Zhu, Zuofeng,Fu, Yongcai,Cai, Hongwei,Sun, Chuanqing,Tan, Lubin,Liu, Fengxia,Wang, Guijuan,Ye, Sheng,Zhu, Zuofeng,Fu, Yongcai,Cai, Hongwei,Sun, Chuanqing,Tan, Lubin,Liu, Fengxia,Wang, Guijuan,Ye, Sheng,Zhu, Zuofeng,Fu, Yongcai,Cai, Hongwei,Sun, Chuanqing,Tan, Lubin,Liu, Fengxia,Wang, Guijuan,Ye, Sheng,Zhu, Zuofeng,Fu, Yongcai,Cai, Hongwei,Sun, Chuanqing,Zhang, Peijiang. 2008

[12]DNA methylation polymorphism in annual wild soybean (Glycine soja Sieb. et Zucc.) and cultivated soybean (G. max L. Merr.). Zhong, Xiaofang,Gong, Lei,Ma, Yan,Qi, Bao,Liu, Bao,Wang, Yumin,Liu, Xiaodong,Dong, Yingshan. 2009

[13]Artificial selection for determinate growth habit in soybean. Lee, Rian,McClean, Phillip E.,Lee, Rian,McClean, Phillip E.,Wang, Xiaobo,Li, Yinghui,Qiu, Lijuan,Tian, Zhixi,Ma, Jianxin,Specht, James E.,Nelson, Randall L.,Nelson, Randall L..

[14]PCK1 expression is correlated with the plasma glucose level in the duck. Chen, L.,Zeng, T.,Li, G. Q.,Tian, Y.,Lu, L. Z.,Li, Q. H.,Liu, R..

[15]Retrotransposon-based sequence-specific amplification polymorphism markers reveal that cultivated Pyrus ussuriensis originated from an interspecific hybridization. Yu, Peiyuan,Bai, Songling,Teng, Yuanwen,Jiang, Shuang,Wang, Xiaoxiang.

[16]The origin of Chinese domestic horses revealed with novel mtDNA variants. Yang, Yunzhou,Liu, Shuqin,Zhao, Chunjiang,Wu, Changxin,Yang, Yunzhou,Zhu, Qiyun,Zhao, Chunjiang,Wu, Changxin,Zhao, Chunjiang,Wu, Changxin.

[17]Fine mapping a domestication-related QTL for spike-related traits in a synthetic wheat. Wang, Jin,Liao, Xiangzheng,Li, Yulian,Zhou, Ronghua,Gao, Lifeng,Jia, Jizeng,Wang, Jin,Yang, Xueju.

[18]A genome-wide survey with different rapeseed ecotypes uncovers footprints of domestication and breeding. Wei, Dayong,Cui, Yixin,He, Yajun,Ding, Yijuan,Li, Jiana,Qian, Wei,Wei, Dayong,Xiong, Qing,Qian, Lunwen,Tong, Chaobo,Lu, Guangyuan,Jung, Christian.

[19]Analysis of average standardized SSR allele size supports domestication of soybean along the Yellow River. Li, Ying-hui,Zhang, Chen,Li, Wei,Chang, Ru-zhen,Qiu, Li-juan,Smulders, Marinus J. M.,Ma, Yan-song,Xu, Qu.

[20]Conserved globulin gene across eight grass genomes identify fundamental units of the loci encoding seed storage proteins. Gu, Yong Qiang,Wanjugi, Humphrey,Coleman-Derr, Devin,Anderson, Olin D.,Kong, Xiuying.

作者其他论文 更多>>