Comparison of artificial intelligence and empirical models for estimation of daily diffuse solar radiation in North China Plain
文献类型: 外文期刊
第一作者: Feng, Yu
作者: Feng, Yu;Cui, Ningbo;Zhang, Qingwen;Zhao, Lu;Feng, Yu;Cui, Ningbo;Zhang, Qingwen;Zhao, Lu;Feng, Yu;Gong, Daozhi
作者机构:
关键词: Diffuse solar radiation;Extreme learning machine;Backpropagation neural networks;Random forests;Generalized regression neural networks;North China Plain
期刊名称:INTERNATIONAL JOURNAL OF HYDROGEN ENERGY ( 影响因子:5.816; 五年影响因子:5.242 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: Accurate diffuse solar radiation (Ha) data is highly crucial for the development and utilization of solar energy technologies. However, due to expensive cost and technology requirements, measurements of Ha are not available in many regions of North China Plain (NCP), where the diffuse and direct solar radiation are affected by severe particulate pollution. Thus, development of models for precisely estimating H-d is indeed essential in NCP. On this account, the present studies proposed four artificial intelligence models, including the extreme learning machine (ELM), backpropagation neural networks optimized by genetic algorithm (GANN), random forests (RF), and generalized regression neural networks (GRNN), for estimating daily Hd at two meteorological stations of NCP. Daily global solar radiation and sunshine duration along with the estimated extraterrestrial radiation and maximum possible sunshine duration were selected as model inputs to train the models. Meanwhile, the proposed AI models were compared with the empirical Iqbal model to test their performance using measured Hd data. The results indicated that the ELM, GANN, RF, and GRNN models all performed much better than the empirical Iqbal model for estimating daily Ha. All the models underestimated Hd for both stations, with average relative error ranging from -5.8% to -5.4% for AI models and 19.1% for Iqbal model in Beijing, -5.9% to -4.3% and -26.9% in Zhengzhou, respectively. Generally, GANN model had the best accuracy, and ELM ranked next, followed by RF and GRNN models. The ELM model had a slightly poorer performance but the highest computation speed, and both the GANN and ELM models could be highly recommended to estimate daily Ha in NCP of China. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
分类号: TK
- 相关文献
作者其他论文 更多>>
-
Effect of nitrogen fertilizer management on N2O emission and NH3 volatilization from orchards
作者:Wen, Shenglin;Cui, Ningbo;Xing, Liwen;Wu, Zongjun;Zhang, Yixuan;Wang, Zhihui;Wen, Shenglin;Cui, Ningbo;Xing, Liwen;Wu, Zongjun;Zhang, Yixuan;Wang, Zhihui;Gong, Daozhi;Wang, Jiaxin
关键词:Nitrogen fertilizer; Management practices; Soil properties; Influencing factors; Meta-analysis
-
Estimating reference crop evapotranspiration using optimized empirical methods with a novel improved Grey Wolf Algorithm in four climatic regions of China
作者:Dong, Juan;Xing, Liwen;Cui, Ningbo;Guo, Li;Liang, Chuan;Zhao, Lu;Wang, Zhihui;Gong, Daozhi
关键词:Empirical parameter; Intelligence optimization algorithm; Radiation -based method; Humidity -based method; Temperature -based method
-
Estimating reference crop evapotranspiration using improved convolutional bidirectional long short-term memory network by multi-head attention mechanism in the four climatic zones of China
作者:Dong, Juan;Xing, Liwen;Cui, Ningbo;Zhao, Lu;Guo, Li;Wang, Zhihui;Tan, Mingdong;Du, Taisheng;Gong, Daozhi
关键词:Hybrid deep learning model; Multivariate Adaptive Regression Splines; Empirical model; Limited meteorological input; Cross-validation strategy
-
Higher improvement in soil health by animal-sourced than plant-sourced organic materials through optimized substitution
作者:Shi, Chang;Zhang, Qingwen;Yu, Bowei;Zhang, Qingwen
关键词:Manure; Positive feedback; Sustainable agriculture; Machine learning
-
Optimization of multi-dimensional indices for kiwifruit orchard soil moisture content estimation using UAV and ground multi-sensors
作者:Zhu, Shidan;Cui, Ningbo;Guo, Li;Jiang, Shouzheng;Wu, Zongjun;Lv, Min;Chen, Fei;Liu, Quanshan;Wang, Mingjun;Jin, Huaan;Jin, Xiuliang
关键词:Root-zone soil moisture content; UAV-Ground multi-sensor data; Ti-VIi-CWSI space; Ensemble learning model; Planted-by-planted-grid mapping
-
Estimating daily kiwifruit evapotranspiration under regulated deficit irrigation strategy using optimized surface resistance based model
作者:Xing, Liwen;Cui, Ningbo;Guo, Li;Wu, Zongjun;Wen, Shenglin;Zhao, Lu;Liu, Chunwei;Zhao, Long;Jiang, Xuelian;Gong, Daozhi
关键词:Water consumption; Jarvis model; Clumping model; Soil water deficit coefficient; Whale Optimization Algorithm
-
Optimizing irrigation and nitrogen fertilizer management to improve apple yield, quality, water productivity and nitrogen use efficiency: A global meta-analysis
作者:Wen, Shenglin;Cui, Ningbo;Xing, Liwen;Wu, Zongjun;Zhang, Yixuan;Wang, Zhihui;Wen, Shenglin;Cui, Ningbo;Xing, Liwen;Wu, Zongjun;Zhang, Yixuan;Wang, Zhihui;Li, Mingjun;Gong, Daozhi;Fan, Junliang
关键词:Water input; Nitrogen input; Water -saving potentials; Nitrogen -saving potentials; Apple production