Brain Membrane Proteome and Phosphoproteome Reveal Molecular Basis Associating with Nursing and Foraging Behaviors of Honeybee Workers

文献类型: 外文期刊

第一作者: Han, Bin

作者: Han, Bin;Fang, Yu;Feng, Mao;Hu, Han;Hao, Yue;Ma, Chuan;Huo, Xinmei;Meng, Lifeng;Zhang, Xufeng;Wu, Fan;Li, Jianke

作者机构:

关键词: brain;membrane proteome;phosphoproteome;honeybee;behavior;royal jelly

期刊名称:JOURNAL OF PROTEOME RESEARCH ( 影响因子:4.466; 五年影响因子:4.352 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The brain is a vital organ in regulating complex social behaviors of honeybees including learning and memory. Knowledge of how brain membrane proteins and their phosphorylation underlie the age-related behavioral polyethism is still lacking. A hitherto age resolved brain membrane proteome and phosphoproteome were reported in adult worker bees from two strains of honeybee (Apis mellifera ligustica): Italian bee (ITB) and Royal Jelly bee (RJB), a line selected from ITB for increased RJ outputs over four decades. There were 1079 membrane protein groups identified, and 417 unique phosphosites were located in 179 membrane protein groups mainly phosphorylated by kinase families of MAPKs, CDKs, and CK2. Age-resolved dynamics of brain membrane proteome and phosphoproteome are indicative of their correlation with the neurobiological requirements during the adult life of honeybee workers. To stimulate immature brain cell development in newly emerged bees (NEBs), the enriched functional classes associated with metabolism of carbohydrates, nucleosides, and lipids by the up-regulated proteins suggest their enhanced role in driving cell maturity of the brain. In nurse bees (NBs) and forager bees (FBs), a higher number of membrane proteins and phosphoproteins were expressed as compared with in the young stages, and the enriched signal-transduction-related pathways by the up-regulated proteins suggest their significances in sustaining the intensive information processing during nursing and foraging activities. Notably, RJB has shaped unique membrane proteome and phosphoproteome settings to consolidate nursing and foraging behaviors in response to decades of selection underpinning the elevated RJ yields. In RJB NBs, the enriched pathways of phosphatidylinositol signaling and arachidonic acid metabolism indicate a stronger olfaction sensation in response to larval pheromone stimulation. In RJB FBs, the enriched pathways related to signal processing such as SNARE interactions in vesicular transport, writ signaling, TGF-beta signaling, and taurine and hypotaurine metabolism suggest an enhanced nerve sensitivity to prime the stronger tendency to pollen collection. Our data gain a novel insight into membrane proteome and phosphoproteome-driven cerebral regulation of honeybee behaviors, which is potentially useful for further neurobiological investigation in both honeybees and other social insects.

分类号: Q7`Q51

  • 相关文献

[1]Phosphoproteomic Analysis of Protein Phosphorylation Networks in the Hypopharyngeal Gland of Honeybee Workers (Apis mellifera ligustica). Qi, Yuping,Fan, Pei,Hao, Yue,Han, Bin,Fang, Yu,Feng, Mao,Cui, Ziyou,Li, Jianke,Fan, Pei,Cui, Ziyou,Cui, Ziyou.

[2]Novel aspects of understanding molecular working mechanisms of salivary glands of worker honeybees (Apis mellifera) investigated by proteomics and phosphoproteomics. Feng, Mao,Fang, Yu,Han, Bin,Zhang, Lan,Lu, Xiaoshan,Li, Jianke.

[3]Proteome and phosphoproteome analysis of honeybee (Apis mellifera) venom collected from electrical stimulation and manual extraction of the venom gland. Li, Rongli,Zhang, Lan,Fang, Yu,Han, Bin,Lu, Xiaoshan,Zhou, Tiane,Feng, Mao,Li, Jianke,Zhang, Lan. 2013

[4]Changes of proteome and phosphoproteome trigger embryo-larva transition of honeybee worker (Apis mellifera ligustica). Gala, Alemayehu,Fang, Yu,Woltedji, Dereje,Zhang, Lan,Han, Bin,Feng, Mao,Li, Jianke.

[5]In-Depth Phosphoproteomic Analysis of Royal Jelly Derived from Western and Eastern Honeybee Species. Han, Bin,Fang, Yu,Feng, Mao,Lu, Xiaoshan,Huo, Xinmei,Meng, Lifeng,Wu, Bin,Li, Jianke.

[6]Pollen phenolics and regulation of pollen foraging in honeybee colony. Liu, FL,Zhang, XW,Chai, JP,Yang, DR. 2006

[7]Proteome Comparison of Hypopharyngeal Gland Development between Italian and Royal Jelly-Producing Worker Honeybees (Apis mellifera L). Li Jianke,Feng Mao,Begna, Desalegn,Fang Yu,Zheng Aijuan. 2010

[8]Quantitative Neuropeptidome Analysis Reveals Neuropeptides Are Correlated with Social Behavior Regulation of the Honeybee Workers. Han, Bin,Fang, Yu,Feng, Mao,Hu, Han,Qi, Yuping,Huo, Xinmei,Meng, Lifeng,Wu, Bin,Li, Jianke.

[9]The protein and lipid composition of the membrane of milk fat globules depends on their size. Lu, Jing,Anggrek, Jeni,van Hooijdonk, Toon,Hettinga, Kasper Arthur,Lu, Jing,Boeren, Sjef,Vervoort, Jacques,Lu, Jing,Argov-Argaman, Nurit.

[10]Characterization of mouse brain microRNAs after infection with cyst-forming Toxoplasma gondii. Xu, Min-Jun,Zhou, Dong-Hui,Huang, Si-Yang,Fan, Yi-Fan,Zhu, Xing-Quan,Nisbet, Alasdair J.,Zhu, Xing-Quan,Fan, Yi-Fan. 2013

[11]Changes in the proteomic profiles of mouse brain after infection with cyst-forming Toxoplasma gondii. Zhou, Dong-Hui,Zhao, Fu-Rong,Huang, Si-Yang,Xu, Min-Jun,Song, Hui-Qun,Zhu, Xing-Quan,Su, Chunlei,Zhu, Xing-Quan. 2013

[12]Cloning and Characterization of a GABA Receptor from Plutella xylostella (Lepidoptera: Plutellidae). Zhou, Xiao-Mao,Wu, Qing-Jun,Zhou, Xiao-Mao,Zhang, You-Jun,Bai, Lian-Yang,Huang, Xiong-Ying.

[13]Establishment of a novel and highly permissive cell line for the efficient replication of cyprinid herpesvirus 2 (CyHV-2). Ma, Jie,Jiang, Nan,Xu, Jin,Fan, Yuding,Zhou, Yong,Zeng, Lingbing,LaPatra, Scott E.,Jin, Ling.

[14]Fusion of C3d with hemagglutinin enhances protective immunity against swine influenza virus. Li, Guo-Xin,Tian, Zhi-Jun,Yu, Hai,Jin, Yuan-Yuan,Hou, Shao-Hua,Zhou, Yan-Jun,Liu, Tian-Qiang,Hu, Shou-Ping,Tong, Guang-Zhi,Li, Guo-Xin,Tong, Guang-Zhi,Li, Guo-Xin,Yu, Hai,Zhou, Yan-Jun,Tong, Guang-Zhi.

[15]Molecular cloning and characterization of Bombyx mori CREB gene. Song, Hongsheng,Sun, Yue,Zhang, Yang,Li, Muwang.

[16]Neuropeptide Y content in the hypothalamic paraventricular nucleus responds to fasting and refeeding in broiler chickens. Zhou, WD,Murakami, M,Hasegawa, S,Yoshizawa, F,Sugahara, K.

[17]MicroRNA transcriptome profiling of mice brains infected with Japanese encephalitis virus by RNA sequencing. Li, Xin-Feng,Cao, Rui-Bing,Wang, Jing-Man,Zhang, Yuan-Peng,Gu, Jin-Yan,Feng, Xiu-Li,Zhou, Bin,Chen, Pu-Yan,Luo, Jun,Fan, Jian-Ming.

[18]Molecular cloning, characterization and expression analysis of gonadal P450 aromatase in the half-smooth tongue-sole, Cynoglossus semilaevis. Deng, Si-Ping,Chen, Song-Lin,Xu, Jian-Yong,Liu, Ben-Wei,Deng, Si-Ping.

[19]The Eukaryote-Like Serine/Threonine Kinase STK Regulates the Growth and Metabolism of Zoonotic Streptococcus suis. Zhang, Chunyan,Sun, Wen,Dong, Mengmeng,Liu, Wanquan,Li, Lu,Xu, Zhuofei,Zhou, Rui,Tan, Meifang,Gao, Ting,Li, Lu,Xu, Zhuofei,Zhou, Rui. 2017

[20]A comparative analysis of phosphoproteome in ovine muscle at early postmortem in relationship to tenderness. Li, Xin,Chen, Lijuan,He, Fan,Li, Meng,Zhang, Dequan,Shen, Qingwu. 2017

作者其他论文 更多>>