Molecular mapping of quantitative trait loci for three kernel-related traits in maize using a double haploid population

文献类型: 外文期刊

第一作者: Shi, Zi

作者: Shi, Zi;Song, Wei;Xing, Jinfeng;Duan, Minxiao;Wang, Fengge;Tian, Hongli;Xu, Liwen;Wang, Shuaishuai;Su, Aiguo;Li, Chunhui;Zhang, Ruyang;Zhao, Yanxin;Luo, Meijie;Wang, Jidong;Zhao, Jiuran

作者机构:

关键词: Kernel-related traits;QTL mapping;SNP;Maize

期刊名称:MOLECULAR BREEDING ( 影响因子:2.589; 五年影响因子:2.75 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Kernel size and kernel weight are important factors possibly involved in the determination of grain yield in maize, so identifying the genetic basis of kernel-related traits provides insights into the breeding of high-yield maize varieties. Kernel length (KL), kernel width (KW) and hundred kernel weight (HKW) were evaluated in three various planting conditions for the 240 field-grown double haploid (DH) lines derived from the single-cross hybrid Xianyu335. Variations in KL, KW and HKW were observed among DH lines, and all three traits showed a broad sense heritability of 76%. A total of 964 single nucleotide polymorphisms (SNPs) from the MaizeSNP3072 chip was utilised to create a high-density genetic map of 1546.4 cM and to identify quantitative trait loci (QTLs). Using composite interval mapping, a total of five, seven and five QTLs have been mapped for KL, KW and HKW, respectively. qkl1-2 and qkl4-1 explained 17.8% and 14.2% of the phenotypic variation in KL, respectively, and the other three QTLs contributed 3.2-4.0%. The phenotypic variation explained (PVE) of seven QTLs responsible for KW ranged from 3.3 to 9.5%. Three QTLs for HKW, qhkw1, qhkw5 and qhkw10 each explained more than 10% of the phenotypic variation, and qhkw4 and qhkw9 accounted for 3.0% and 6.0%, respectively. Due to their detection in multiple planting environments, the loci mapped here appear to be potential targets for the improvement of maize grain yield.

分类号: Q94

  • 相关文献

[1]Mapping of a major QTL for salt tolerance of mature field-grown maize plants based on SNP markers. Zhao, Yanxin,Zhang, Ruyang,Xing, Jinfeng,Duan, Minxiao,Li, Jingna,Wang, Naishun,Wang, Wenguang,Zhang, Shasha,Zhang, Huasheng,Shi, Zi,Song, Wei,Zhao, Jiuran,Chen, Zhihui. 2017

[2]Molecular mapping of quantitative trait loci for grain moisture at harvest in maize. Song, Wei,Shi, Zi,Xing, Jinfeng,Duan, Minxiao,Su, Aiguo,Li, Chunhui,Zhang, Ruyang,Zhao, Yanxin,Luo, Meijie,Wang, Jidong,Zhao, Jiuran.

[3]QTL mapping of flag leaf traits in common wheat using an integrated high-density SSR and SNP genetic linkage map. Wu, Qiuhong,Chen, Yongxing,Fu, Lin,Zhou, Shenghui,Chen, Jiaojiao,Zhao, Xiaojie,Zhang, Dong,Ouyang, Shuhong,Wang, Zhenzhong,Li, Dan,Wang, Guoxin,Zhang, Deyun,Yuan, Chengguo,You, Mingshan,Liu, Zhiyong,Yuan, Chengguo,Wang, Lixin,Han, Jun.

[4]Mapping QTL for stay-green and agronomic traits in wheat under diverse water regimes. Shi, Shenkui,Azam, Farooq I.,Li, Huihui,Chang, Xiaoping,Jing, Ruilian,Shi, Shenkui,Li, Baoyun,Azam, Farooq I..

[5]Dissection of the genetic architecture for grain quality-related traits in three RIL populations of maize (Zea mays L.). Wang, Zhiyong,Liu, Na,Ku, Lixia,Tian, Zhiqiang,Shi, Yong,Guo, Shulei,Su, Huihui,Zhang, Liangkun,Ren, Zhenzhen,Li, Guohui,Wang, Xiaobo,Zhu, Yuguang,Chen, Yanhui,Wang, Zhiyong,Liu, Na,Ku, Lixia,Tian, Zhiqiang,Shi, Yong,Guo, Shulei,Su, Huihui,Zhang, Liangkun,Ren, Zhenzhen,Li, Guohui,Wang, Xiaobo,Zhu, Yuguang,Chen, Yanhui,Liu, Na,Qi, Jianshuang,Zhang, Xin.

[6]QTL Mapping in Three Connected Populations Reveals a Set of Consensus Genomic Regions for Low Temperature Germination Ability in Zea mays L.. Li, Xuhui,Wang, Guihua,Li, Li,Jia, Guangyao,Ren, Lisha,Wang, Jianhua,Gu, Riliang,Fu, Junjie,Wang, Guoying,Lubberstedt, Thomas. 2018

[7]Identification of QTL for maize resistance to common smut by using recombinant inbred lines developed from the Chinese hybrid Yuyu22. Ding, Jun-qiang,Chander, Subhash,Li, Jian-sheng,Wang, Xiao-ming. 2008

[8]Molecular genetic mapping of a high-lysine mutant gene (opaque-16) and the double recessive effect with opaque-2 in maize. Yang, WP,Zheng, YL,Zheng, WT,Feng, R. 2005

[9]Genetic analysis of leaf morphology underlying the plant density response by QTL mapping in maize (Zea mays L.). Ku, Lixia,Ren, Zhenzhen,Shi, Yong,Su, Huihui,Wang, Zhiyong,Li, Guohui,Wang, Xiaobo,Zhu, Yuguang,Zhou, Jinlong,Chen, Yanhui,Ku, Lixia,Ren, Zhenzhen,Shi, Yong,Su, Huihui,Wang, Zhiyong,Li, Guohui,Wang, Xiaobo,Zhu, Yuguang,Zhou, Jinlong,Chen, Yanhui,Chen, Xiao,Qi, Jianshuang,Zhang, Xin.

[10]QTL mapping of resistance to sheath blight in maize (Zea Mays L.). Yang, H,Yang, JP,Rong, TZ,Tan, J,Qiu, ZG.

[11]Dissection of Recombination Attributes for Multiple Maize Populations Using a Common SNP Assay. Guan, Haiying,Guan, Haiying,Guan, Haiying,Ali, Farhan,Pan, Qingchun. 2017

[12]A Kelch Motif-Containing Serine/Threonine Protein Phosphatase Determines the Large Grain QTL Trait in Rice. Hu, Zejun,Sun, Fan,Xin, Xiaoyun,Qian, Xi,Yang, Jingshui,Luo, Xiaojin,Hu, Zejun,He, Haohua,Wang, Wenxiang,Zhang, Shiyong. 2012

[13]High-Density Linkage Map Construction and Mapping of Salt-Tolerant QTLs at Seedling Stage in Upland Cotton Using Genotyping by Sequencing (GBS). Latyr Diouf,Du, Xiongming,Zhaoe Pan,Shou-Pu He,Wen-Fang Gong,Yin Hua Jia,Richard Odongo Magwanga,Kimbembe Romesh Eric Romy,Harun or Rashid,Joy Nyangasi Kirungu,Xiongming Du. 2017

[14]Dynamic QTL mapping for plant height in Upland cotton (Gossypium hirsutum). Shang, Lianguang,Abduweli, Abdugheni,Cai, Shihu,Liu, Fang,Wang, Kunbo,Wang, Yumei.

[15]High-Density Genetic Mapping Identifies New Major Loci for Tolerance to Low-Phosphorus Stress in Soybean. Zhang, Dan,Li, Hongyan,Chu, Shanshan,Lv, Haiyan,Wang, Jinshe,Zhang, Hengyou,Hu, Zhenbin,Yu, Deyue. 2016

[16]A Dominant Locus, qBSC-1, Controls beta Subunit Content of Seed Storage Protein in Soybean (Glycine max (L.) Merri.). Wang Jun,Liu Lin,Guo Yong,Wang Yong-hui,Zhang Le,Jin Long-guo,Guan Rong-xia,Liu Zhang-xiong,Wang Lin-lin,Chang Ru-zhen,Qiu Li-juan. 2014

[17]A major QTL controlling seed dormancy and pre-harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace. Bai, Gui-Hua,Chen, Cui-Xia,Cai, Shi-Bin,Cai, Shi-Bin. 2008

[18]Genetic Linkage Map Construction and QTL Analysis of Two Interspecific Reproductive Isolation Traits in Sponge Gourd. Wu, Haibin,He, Xiaoli,Gong, Hao,Luo, Shaobo,Li, Mingzhu,Chen, Junqiu,Zhang, Changyuan,Huang, Wangping,Luo, Jianning,Wu, Haibin,Luo, Shaobo,Yu, Ting. 2016

[19]Identification of QTL Associated with Nitrogen Uptake and Nitrogen Use Efficiency Using High Throughput Genotyped CSSLs in Rice (Oryza sativa L.). Zhou, Yong,Tao, Yajun,Tang, Dongnan,Zhong, Jun,Wang, Yi,Yuan, Qiumei,Yu, Xiaofeng,Zhang, Yan,Wang, Yulong,Liang, Guohua,Dong, Guichun,Wang, Jun. 2017

[20]RFLP-facilitated investigation of the quantitative resistance of rice to brown planthopper (Nilaparvata lugens). Xu, XF,Mei, HW,Luo, LJ,Cheng, XN,Li, ZK. 2002

作者其他论文 更多>>