Distinct drivers of activity, abundance, diversity and composition of ammonia-oxidizers: evidence from a long-term field experiment

文献类型: 外文期刊

第一作者: Guo, Junjie

作者: Guo, Junjie;Ling, Ning;Zhu, Chen;Kong, Yali;Wang, Min;Shen, Qirong;Guo, Shiwei;Chen, Huan

作者机构:

关键词: Long-term fertilization;Ammonia-oxidizers;1-Octyne inhibitor

期刊名称:SOIL BIOLOGY & BIOCHEMISTRY ( 影响因子:7.609; 五年影响因子:8.312 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: AbstractAmmonia oxidation, the primary and rate-limiting step of nitrification, is mediated by both ammonia-oxidizing archaea (AOA) and bacteria (AOB). However, the dominant environmental driver of the activity, abundance, diversity and composition of ammonia-oxidizers has not been well understood enough, and the relative contribution of AOA and AOB to nitrification is still under debate. Soils treated with different fertilization regimes in an over 35-year field experiment were collected to explore the variation in function and structure of ammonia-oxidizer communities and corresponding driver. The highest nitrification activity (44.49?mg?N kg?1soil d?1) was found in only organic fertilizer (O) treated soil, whereas the lowest activity (2.81?mg?N kg?1soil d?1) was observed in only mineral fertilizer (NPK) treated soil. Moreover, as 1-octyne was employed to discriminate AOA- and AOB-supported nitrification, AOA dominated (93.53%) the nitrification in the Control soil, while AOB contributed dominantly (84.73–89.10%) in all of the organic amended soils, and NPK-treated soil showed an almost equal contribution to AOA (45.79%) and AOB (54.21%). Compared with the Control soil, AOA abundance increased in soils with organic and low chemical fertilizer but decreased in only chemically treated soil, whereas the AOB abundance in all fertilized soils was greatly enhanced. The AOA activity was linearly dependent on AOA abundance, whereas the AOB activity was exponentially correlated with AOB abundance. The sequences of AOA and AOB in the Control soil were mostly affiliated with group I.1bthaumarchaeotaand genusNitrosospiraclusters 3a.1. Soil treated with NPK increased the abundance of AOA that belonged to group I.1a-associated lineage, whereas more abundant AOB was related toNitrosospiraclusters 3a.2 and 8b. In contrast, the O-treated soil showed more abundant AOB that belonged toNitrosospiraclusters 3b and 8b. As revealed by aggregated boosted tree analysis, the soil ammonium (NH4+) content was identified as the dominant driver of activity and diversity of AOA, and soil pH was considered to be the major influencing factor in abundance and composition of AOA; the AOB composition was mainly affected by soil NH4+content, the relative activity and diversity by soil pH, and the relative abundance by soil electrical conductivity (EC). Collectively, different fertilization regimes will result in variations in activity, abundance, diversity and composition of ammonia-oxidizers with distinct drivers. Our research could be helpful to identify better strategies for the mitigation of nitrate production in agricultural soils.Highlights?Soil samples were collected from a 35-year long-term experiment.?1-Octyne was used to differentiate the ammonia oxidation activities of AOA and AOB.

分类号: S1

  • 相关文献

[1]Variable responses of ammonia oxidizers across soil particle-size fractions affect nitrification in a long-term fertilizer experiment. Zhang, Qian,Liang, Guoqing,Zhou, Wei,Myrold, David D..

[2]Relationships between ammonia-oxidizing communities, soil methane uptake and nitrous oxide fluxes in a subtropical plantation soil with nitrogen enrichment. Wang, Yongsheng,Fang, Huajun,Yu, Guirui,Dang, Xusheng,Wang, Lei,Wang, Yongsheng,Cheng, Shulan,Xu, Minjie,Li, Linsen,Yang, Xueming.

[3]Soil carbon sequestration under long-term rice-based cropping systems of purple soil in Southwest China. Chen Qing-rui,Qin Yu-sheng,Chen Kun,Tu Shi-hua,Xu Ming-gang,Zhang Wen-ju. 2015

[4]Diversity and Abundance of Soil Animals as Influenced by Long-Term Fertilization in Grey Desert Soil, China. Jiang, Maibo,Wang, Xihe,Sun, Xueqing,Liu, Hua,Jiang, Maibo,Liusui, Yunhao,Jiang, Maibo,Zhao, Chengyi. 2015

[5]Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation. Zhang, Shuiqing,Guo, Doudou,Huang, Shaomin,Ai, Chao,Zhang, Xin,Zhou, Wei. 2018

[6]Nitrogen use efficiency in a wheat-corn cropping system from 15 years of manure and fertilizer applications. Duan, Yinghua,Xu, Minggang,Liu, Hongbin,Wang, Bairen,Gao, Suduan,Yang, Xueyun,Huang, Shaomin. 2014

[7]Changes in Organic Carbon Index of Grey Desert Soil in Northwest China After Long-Term Fertilization. Xu Yong-mei,Xu Ming-gang,Zhang Wen-ju,Jiang Gui-ying,Xu Yong-mei,Liu Hua,Wang Xi-he,Xu Yong-mei,Liu Hua,Wang Xi-he. 2014

[8]Effect of Long-Term Fertilization on Organic Nitrogen Functional Groups in Black Soil as Revealed by Synchrotron-Based X-Ray Absorption Near-Edge Structure Spectroscopy. Gao Qiang,Zhang Jin-jing,Li Hui,Wang Shuai,Zhu Ping,Zhao Yi-dong. 2015

[9]Chemical fertilizers could be completely replaced by manure to maintain high maize yield and soil organic carbon (SOC) when SOC reaches a threshold in the Northeast China Plain. Li Hui,Feng Wen-ting,Sun Nan,Xu Ming-gang,Li Hui,Feng Wen-ting,He Xin-hua,Zhu Ping,Gao Hong-jun. 2017

[10]Soil Organic Carbon Accumulation Increases Percentage of Soil Olsen-P to Total P at Two 15-Year Mono-Cropping Systems in Northern China. Shen Pu,He Xin-hua,Xu Ming-gang,Zhang Hui-min,He Xin-hua,Peng Chang,Gao Hong-jun,Liu Hua,Xu Yong-mei,Qin Song,Xiao Hou-jun. 2014

[11]Long-term fertilization effects on carbon and nitrogen in particle-size fractions of a Chinese Mollisol. Yan, Y.,He, H.,Zhang, X.,Chen, Y.,Xie, H.,Bai, Z.,Yan, Y.,Zhang, X.,Chen, Y.,Zhu, P.,Ren, J.,Wang, L.. 2012

[12]Impacts of long-term inorganic and organic fertilization on lignin in a Mollisol. Liu, Ning,He, Hongbo,Xie, Hongtu,Bai, Zhen,Zhang, Xudong,Liu, Ning,Peng, Chang,Zhu, Ping,Ren, Jun,Wang, Lichun. 2010

[13]Soil pH Dynamics and Nitrogen Transformations Under Long-Term Chemical Fertilization in Four Typical Chinese Croplands. Meng Hong-qi,Lu Jia-long,Meng Hong-qi,Xu Ming-gang,Wang Bo-ren,Zhang Hui-min,Meng Hong-qi,He Xin-hua,Li Jian-wei,Shi Xiao-jun,Peng Chang. 2013

[14]Bacterial Community Structure after Long-term Organic and Inorganic Fertilization Reveals Important Associations between Soil Nutrients and Specific Taxa Involved in Nutrient Transformations. Li, Fang,Zhang, Jiabao,Yin, Jun,Li, Fang,Chen, Lin,Zhang, Jiabao,Huang, Shaomin. 2017

[15]Mineral fertilizer alters cellulolytic community structure and suppresses soil cellobiohydrolase activity in a long-term fertilization experiment. Fan, Fenliang,Li, Zhaojun,Liang, Yongchao,Wakelin, Steven A.,Yu, Wantai.

[16]Rice yield, potassium uptake and apparent balance under long-term fertilization in rice-based cropping systems in southern China. Zhang, Huimin,Xu, Minggang,Shi, Xiaojun,Li, Zuzhang,Huang, Qinghai,Wang, Xiujun.

[17]Microbial composition and diversity are associated with plant performance: a case study on long-term fertilization effect on wheat growth in an Ultisol. Li, Lihua,Fan, Fenliang,Song, Alin,Yin, Chang,Cui, Peiyuan,Li, Zhaojun,Liang, Yongchao.

[18]Trends in grain yields and soil organic C in a long-term fertilization experiment in the China Loess Plateau. Xu, Minggang,Fan, Tinglu,Song, Shangyou,Fan, Tinglu,Zhou, Guangye,Ding, Linping.

[19]Long-term combined chemical and manure fertilizations increase soil organic carbon and total nitrogen in aggregate fractions at three typical cropland soils in China. He, Y. T.,Zhang, W. J.,Xu, M. G.,Sun, F. X.,Wang, J. Z.,He, X. H.,Tong, X. G.,Huang, S. M.,Zhu, P.,He, X. H..

[20]Crop yield, nitrogen uptake and nitrate-nitrogen accumulation in soil as affected by 23 annual applications of fertilizer and manure in the rainfed region of Northwestern China. Yang, Sheng-Mao,Malhi, S. S.,Song, Jian-Rong,Xiong, You-Cai,Yue, Wei-Yun,Lu, Li Li,Wang, Jian-Guo,Guo, Tian-Wen. 2006

作者其他论文 更多>>