Thymol Ameliorates Cadmium-Induced Phytotoxicity in the Root of Rice (Oryza sativa) Seedling by Decreasing Endogenous Nitric Oxide Generation
文献类型: 外文期刊
第一作者: Wang, Ting-Ting
作者: Wang, Ting-Ting;Shi, Zhi Qi;Chen, Jian;Wang, Ting-Ting;Shi, Zhi Qi;Xu, Xiao-Feng;Hu, Liang-Bin;Chen, Jian;Han, Fengxiang X.;Zhou, Li-Gang;Chen, Jian
作者机构:
关键词: thymol;Oryza sativa;cadmium;nitric oxide;phytotoxicity
期刊名称:JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY ( 影响因子:5.279; 五年影响因子:5.269 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: Thymol has been developed as medicine and food preservative due to its immune-regulatory effect and antimicrobial activity, respectively. However, little is currently known about the role of thymol in the modulation of plant physiology. In the present study, we applied biochemical and histochemical approaches to investigate thymol-induced tolerance in rice (Oryza sativa) seedlings against Cd (cadmium) stress. Thymol at 20 mu M recovered root growth completely upon CdCl2 exposure. Thymol pronouncedly decreased Cd-induced ROS accumulation, oxidative injury, cell death, and Cd2+ accumulation in roots. Pharmaceutical experiments suggested that endogenous NO mediated Cd-induced phytotoxicity. Thymol decreased Cd-induced NO accumulation by suppressing the activity of NOS (nitric oxide synthase) and NR (nitrate reductase) in root. The application of NO donor (SNP, sodium nitroprusside) resulted in the increase in endogenous NO level, which in turn compromised the alleviating effects of thymol on Cd toxicity. Such findings may helpful to illustrate the novel role of thymol in the modulation of plant physiology, which may be applicable to improve crop stress tolerance.
分类号: R15`S
- 相关文献
作者其他论文 更多>>
-
Progress in Microbial Fertilizer Regulation of Crop Growth and Soil Remediation Research
作者:Wang, Tingting;Xu, Jiaxin;Liu, Peng;Hou, Xin;Yang, Long;Zhang, Li;Chen, Jian
关键词:microbiological fertilizer; plant-growth-promoting bacteria; crop growth; soil remediation
-
A Novel Quercetin Encapsulated Glucose Modified Liposome and Its Brain-Target Antioxidative Neuroprotection Effects
作者:Chen, Jian;Xia, Chen;Deng, Junlin;Yu, Manyou;Xiang, Zuoya;Gan, Lu;Zhu, Boyu;Yang, Xing;Chen, Jinxia;Yu, Peiyun;Yang, Chunyan;Wu, Yong
关键词:quercetin; neuroprotection; brain-target; liposome; antioxidant
-
Comprehensive Analysis of Phenolic Constituents, Biological Activities, and Derived Aroma Differences of Penthorum chinense Pursh Leaves after Processing into Green and Black Tea
作者:Xiang, Zhuoya;Zhu, Boyu;Yang, Xing;Deng, Junlin;Zhu, Yongqing;Gan, Lu;Yu, Manyou;Chen, Jian;Xia, Chen;Chen, Song
关键词:P. chinense leaves; processing; phenolic constituents; volatile compounds; biological activities
-
Development and characterization of a novel nanobody with SRMV neutralizing activity
作者:Sun, Miao;Chen, Yanfei;Chen, Jian;Li, Ling;Xue, Qinghong;Wang, Changjiang;Qu, Guanggang;Luo, Huaye;Zhang, Min
关键词:Small ruminant morbillivirus (SRMV); Nanobody; Fusion protein; Hemagglutinin protein
-
Mathematical modeling of optimal coagulant dosage for tofu preparation using MgCl2
作者:Chen, Jian;Cai, Lei;Huang, Xiaolong;Fu, Hongling;Yuan, Changwei;Gong, Hao;Lyu, Bo;Wang, Zhaohui;Yu, Hansong;Chen, Jian;Cai, Lei;Huang, Xiaolong;Fu, Hongling;Gong, Hao;Lyu, Bo;Yu, Hansong;Sun, Ling
关键词:Traditional soybean products optimal coagulant; Mathematical model; Low-salt ionized soybean yellow slurry water
-
Thidiazuron combined with cyclanilide modulates hormone pathways and ROS systems in cotton, increasing defoliation at low temperatures
作者:Shu, Hongmei;Sun, Shangwen;Wang, Xiaojing;Yang, Changqin;Zhang, Guowei;Li, Zhikang;Liang, Ting;Liu, Ruixian;Chen, Jian;Han, Huanyong
关键词:cyclanilide; thidiazuron; cotton; low temperature; defoliation
-
Rhizosphere Bacteria Help to Compensate for Pesticide-Induced Stress in Plants
作者:Li, Yong;Chen, Jian;Zhang, Leigang;Cheng, Jinjin;Yu, Xiangyang;Li, Yong;Zhang, Kaiwei;Chen, Jian;Zhang, Leigang;Feng, Fayun;Cheng, Jinjin;Ma, Liya;Li, Mei;Wang, Ya;Yu, Xiangyang;Yu, Xiangyang;Jiang, Wayne
关键词:microbial compensatory; pesticides; rhizospherebacteria; root exudates; plant growth