Mapping QTL for stay-green and agronomic traits in wheat under diverse water regimes

文献类型: 外文期刊

第一作者: Shi, Shenkui

作者: Shi, Shenkui;Azam, Farooq I.;Li, Huihui;Chang, Xiaoping;Jing, Ruilian;Shi, Shenkui;Li, Baoyun;Azam, Farooq I.

作者机构:

关键词: Drought tolerance;QTL mapping;SNP;Triticum aestivum

期刊名称:EUPHYTICA ( 影响因子:1.895; 五年影响因子:2.181 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Wheat (Triticum aestivum L.) yield is directly proportional to physio-morphological traits. A high-density genetic map consisting of 2575 markers was used for mapping QTL controlling stay-green and agronomic traits in wheat grown under four diverse water regimes. A total of 108 additive QTL were identified in target traits. Among them, 28 QTL for chlorophyll content (CC) were detected on 11 chromosomes, 43 for normalized difference vegetation index (NDVI) on all chromosomes except 5B, 5D, and 7D, five for spikes per plant (NSP) on different chromosomes, nine for plant height (PH) on four chromosomes, and 23 for thousand-kernel weight (TKW) on 11 chromosomes. Considering all traits, the phenotypic variation explained (PVE) ranged from 3.61 to 41.62%. A major QTL, QNDVI. cgb-5A. 7, for NDVI with a maximum PVE of 20.21%, was located on chromosome 5A. A stable and major PH QTL was observed on chromosome 4D with a PVE close to 40%. Most distances between QTL and corresponding flanking markers were less than 1 cM, and approximately one-third of the QTL coincided with markers. Each of 16 QTL clusters on 10 chromosomes controlled more than one trait and therefore could be regarded as pleiotropic regions in response to different water regimes. Forty-one epistatic QTL were identified for all traits having PVE of 6.00 to 25.07%. Validated QTL closely linked to flanking markers will be beneficial for marker-assisted selection in improving drought-tolerance in wheat.

分类号: S3

  • 相关文献

[1]Quantitative Trait Loci Associated with Drought Tolerance in Brachypodium distachyon. Jiang, Yiwei,Pei, Zhongyou,Liu, Huifen,Jiang, Yiwei,Zhao, Xiongwei,Wang, Xicheng,Yu, Xiaoqing,Zhao, Xiongwei,Luo, Na,Garvin, David F.,Garvin, David F.. 2017

[2]QTL mapping of flag leaf traits in common wheat using an integrated high-density SSR and SNP genetic linkage map. Wu, Qiuhong,Chen, Yongxing,Fu, Lin,Zhou, Shenghui,Chen, Jiaojiao,Zhao, Xiaojie,Zhang, Dong,Ouyang, Shuhong,Wang, Zhenzhong,Li, Dan,Wang, Guoxin,Zhang, Deyun,Yuan, Chengguo,You, Mingshan,Liu, Zhiyong,Yuan, Chengguo,Wang, Lixin,Han, Jun.

[3]Mapping of a major QTL for salt tolerance of mature field-grown maize plants based on SNP markers. Zhao, Yanxin,Zhang, Ruyang,Xing, Jinfeng,Duan, Minxiao,Li, Jingna,Wang, Naishun,Wang, Wenguang,Zhang, Shasha,Zhang, Huasheng,Shi, Zi,Song, Wei,Zhao, Jiuran,Chen, Zhihui. 2017

[4]Molecular mapping of quantitative trait loci for three kernel-related traits in maize using a double haploid population. Shi, Zi,Song, Wei,Xing, Jinfeng,Duan, Minxiao,Wang, Fengge,Tian, Hongli,Xu, Liwen,Wang, Shuaishuai,Su, Aiguo,Li, Chunhui,Zhang, Ruyang,Zhao, Yanxin,Luo, Meijie,Wang, Jidong,Zhao, Jiuran.

[5]Molecular mapping of quantitative trait loci for grain moisture at harvest in maize. Song, Wei,Shi, Zi,Xing, Jinfeng,Duan, Minxiao,Su, Aiguo,Li, Chunhui,Zhang, Ruyang,Zhao, Yanxin,Luo, Meijie,Wang, Jidong,Zhao, Jiuran.

[6]A major QTL controlling seed dormancy and pre-harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace. Bai, Gui-Hua,Chen, Cui-Xia,Cai, Shi-Bin,Cai, Shi-Bin. 2008

[7]Quantitative trait loci for Aluminum resistance in wheat cultivar Chinese Spring. Ma, Hong-Xiang,Bai, Gui-Hua,Lu, Wei-Zhong. 2006

[8]Mapping a major QTL for hairy leaf sheath introgressed from Aegilops tauschii and its association with enhanced grain yield in bread wheat. Li, Jun,Yang, Wuyun,Wan, Hongshen,Li, Jun,Zhang, Zhefeng,Yang, Wuyun,Yang, Yumin.

[9]Genome-Wide QTL Mapping for Wheat Processing Quality Parameters in a Gaocheng 8901/Zhoumai 16 Recombinant Inbred Line Population. Hui Jin,Weie Wen,Jindong Liu,Shengnan Zhai,Yan Zhang,Jun Yan,Zhiyong Liu,Xianchun Xia,Zhonghu He. 2016

[10]Cloning of 9-cis-epoxycarotenoid dioxygenase gene (TaNCED1) from wheat and its heterologous expression in tobacco. Zhang, S. J.,Song, G. Q.,Li, Y. L.,Gao, J.,Liu, J. J.,Fan, Q. Q.,Huang, C. Y.,Sui, X. X.,Chu, X. S.,Guo, D.,Li, G. Y.. 2014

[11]A wheat (Triticum aestivum) protein phosphatase 2A catalytic subunit gene provides enhanced drought tolerance in tobacco. Xu, Chongyi,Jing, Ruilian,Mao, Xinguo,Jia, Xiaoyun,Chang, Xiaoping.

[12]QTL mapping for plant height and yield components in common wheat under water-limited and full irrigation environments. Li, Xingmao,Xia, Xianchun,Xiao, Yonggui,He, Zhonghu,Wang, Desen,Chen, Xinmin,Li, Xingmao,He, Zhonghu,Trethowan, Richard,Wang, Huajun.

[13]A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses. Saad, Abu Sefyan I.,Li, Xu,Li, He-Ping,Huang, Tao,Gao, Chun-Sheng,Guo, Mao-Wei,Cheng, Wei,Liao, Yu-Cai,Li, He-Ping,Gao, Chun-Sheng,Liao, Yu-Cai,Zhao, Guang-Yao.

[14]Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. He, Guan-Hua,Xu, Ji-Yuan,Liu, Jia-Ming,Li, Pan-Song,Chen, Ming,Ma, You-Zhi,Xu, Zhao-Shi,Wang, Yan-Xia. 2016

[15]Identification of a new stripe rust resistance gene in Chinese winter wheat Zhongmai 175. Lu Jia-ling,Chen Can,Liu Peng,He Zhong-hu,Xia Xian-chun,Chen Can,He Zhong-hu. 2016

[16]Identification of SNPs and development of allelic specific PCR markers for high molecular weight glutenin subunit D(t)x1.5 from Aegilops tauschii through sequence characterization. Yang, WY,Zhang, WJ,Lu, BR. 2005

[17]Molecular mapping of stripe rust resistance gene YrJ22 in Chinese wheat cultivar Jimai 22. Chen, Can,Ma, Chuanxi,He, Zhonghu,Lu, Jialing,Li, Jia,Ren, Yan,Xia, Xianchun,Ren, Yan,He, Zhonghu.

[18]A Kelch Motif-Containing Serine/Threonine Protein Phosphatase Determines the Large Grain QTL Trait in Rice. Hu, Zejun,Sun, Fan,Xin, Xiaoyun,Qian, Xi,Yang, Jingshui,Luo, Xiaojin,Hu, Zejun,He, Haohua,Wang, Wenxiang,Zhang, Shiyong. 2012

[19]High-Density Linkage Map Construction and Mapping of Salt-Tolerant QTLs at Seedling Stage in Upland Cotton Using Genotyping by Sequencing (GBS). Latyr Diouf,Du, Xiongming,Zhaoe Pan,Shou-Pu He,Wen-Fang Gong,Yin Hua Jia,Richard Odongo Magwanga,Kimbembe Romesh Eric Romy,Harun or Rashid,Joy Nyangasi Kirungu,Xiongming Du. 2017

[20]Dynamic QTL mapping for plant height in Upland cotton (Gossypium hirsutum). Shang, Lianguang,Abduweli, Abdugheni,Cai, Shihu,Liu, Fang,Wang, Kunbo,Wang, Yumei.

作者其他论文 更多>>